Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Mach-Zehnder-based silicon photonic switch circuit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6804 KiB  
Article
Theoretical Analysis of Efficient Thermo-Optic Switching on Si3N4 Waveguide Platform Using SiOC-Based Plasmo-Photonics
by Dimitris V. Bellas, Eleftheria Lampadariou, George Dabos, Ioannis Vangelidis, Laurent Markey, Jean-Claude Weeber, Nikos Pleros and Elefterios Lidorikis
Nanomaterials 2025, 15(4), 296; https://doi.org/10.3390/nano15040296 - 15 Feb 2025
Viewed by 994
Abstract
Photonic integrated circuits (PICs) are crucial for advanced applications in telecommunications, quantum computing, and biomedical fields. Silicon nitride (SiN)-based platforms are promising for PICs due to their transparency, low optical loss, and thermal stability. However, achieving efficient thermo-optic (TO) modulation on SiN remains [...] Read more.
Photonic integrated circuits (PICs) are crucial for advanced applications in telecommunications, quantum computing, and biomedical fields. Silicon nitride (SiN)-based platforms are promising for PICs due to their transparency, low optical loss, and thermal stability. However, achieving efficient thermo-optic (TO) modulation on SiN remains challenging due to limited reconfigurability and high power requirements. This study aims to optimize TO phase shifters on SiN platforms to enhance power efficiency, reduce device footprint, and minimize insertion losses. We introduce a CMOS-compatible plasmo-photonic TO phase shifter using a SiOC material layer with a high TO coefficient combined with aluminum heaters on a SiN platform. We evaluate four interferometer architectures—symmetric and asymmetric Mach–Zehnder Interferometers (MZIs), an MZI with a ring resonator, and a single-arm design—through opto-thermal simulations to refine performance across power, losses, footprint, and switching speed metrics. The asymmetric MZI with ring resonator (A-MZI-RR) architecture demonstrated superior performance, with minimal power consumption (1.6 mW), low insertion loss (2.8 dB), and reduced length (14.4 μm), showing a favorable figure of merit compared to existing solutions. The optimized SiN-based TO switches show enhanced efficiency and compactness, supporting their potential for scalable, energy-efficient PICs suited to high-performance photonic applications. Full article
(This article belongs to the Special Issue Progress of Nanoscale Materials in Plasmonics and Photonics)
Show Figures

Figure 1

16 pages, 5958 KiB  
Article
Comprehensive Model for Evaluating the Performance of Mach-Zehnder-Based Silicon Photonic Switch Fabrics in Large Scale
by Marouan Kouissi, Benoit Charbonnier and Catherine Algani
Appl. Sci. 2020, 10(23), 8688; https://doi.org/10.3390/app10238688 - 4 Dec 2020
Cited by 2 | Viewed by 2455
Abstract
Building a large-scale Mach-Zehnder-based silicon photonic switch circuit (LS-MZS) requires an appropriate choice of architecture. In this work, we propose, for the first time to our knowledge, a single metric that can be used to compare different topologies. We propose an accurate analytical [...] Read more.
Building a large-scale Mach-Zehnder-based silicon photonic switch circuit (LS-MZS) requires an appropriate choice of architecture. In this work, we propose, for the first time to our knowledge, a single metric that can be used to compare different topologies. We propose an accurate analytical model of the signal-to-crosstalk ratio (SCR) that highlights the performance limitations of the main building blocks: Mach-Zehnder interferometers (MZI) and waveguide crossings. It is based on the cumulative crosstalk and total insertion loss of the LS-MZS. Four different architectures: Beneš, dilated Beneš, switch and select, double-layer network were studied for the reason that they are mainly referenced in the literature. We compared them using our developed SCR indicator. With reference to the state-of-the-art technology, the analysis of the four architectures using SCR showed that, on a large scale, a high number of waveguide crossings significantly affects the performance of the switch matrix. Moreover, better performance was reached using the double-layer-network architecture. Then, we presented a 2 × 2 MZI using two electro-optic phase shifters and a waveguide crossing realized in LETI’s silicon photonics technology. Measured performances were quite good: the switch circuit had a crosstalk of −31.3 dB and an insertion loss estimated to be less than 1.31 dB. Full article
(This article belongs to the Special Issue Fiber Optic Communication)
Show Figures

Figure 1

Back to TopTop