Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = ML329 (low-molecular MITF-specific inhibitor)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 6735 KiB  
Article
Significant and Various Effects of ML329-Induced MITF Suppression in the Melanoma Cell Line
by Nami Nishikiori, Megumi Watanabe, Tatsuya Sato, Masato Furuhashi, Masae Okura, Tokimasa Hida, Hisashi Uhara and Hiroshi Ohguro
Cancers 2024, 16(2), 263; https://doi.org/10.3390/cancers16020263 - 7 Jan 2024
Cited by 3 | Viewed by 2246
Abstract
To study the inhibitory effects on microphthalmia-associated transcription factor (MITF)-related biological aspects in malignant melanomas (MMs) in the presence or absence of the low-molecular MITF specific inhibitor ML329, cell viability, cellular metabolic functions, and three-dimensional (3D) spheroid formation efficacy were compared among MM [...] Read more.
To study the inhibitory effects on microphthalmia-associated transcription factor (MITF)-related biological aspects in malignant melanomas (MMs) in the presence or absence of the low-molecular MITF specific inhibitor ML329, cell viability, cellular metabolic functions, and three-dimensional (3D) spheroid formation efficacy were compared among MM cell lines including SK-mel-24, A375, dabrafenib- and trametinib-resistant A375 (A375DT), and WM266-4. Upon exposure to 2 or 10 μM of ML329, cell viability was significantly decreased in WM266-4, SK-mel-24, and A375DT cells, but not A375 cells, in a dose-dependent manner, and these toxic effects of ML329 were most evident in WM266-4 cells. Extracellular flux assays conducted using a Seahorse bioanalyzer revealed that treatment with ML329 increased basal respiration, ATP-linked respiration, proton leakage, and non-mitochondrial respiration in WM266-4 cells and decreased glycolytic function in SK-mel-24 cells, whereas there were no marked effects of ML329 on A375 and A375DT cells. A glycolytic stress assay under conditions of high glucose concentrations also demonstrated that the inhibitory effect of ML329 on the glycolytic function of WM266-4 cells was dose-dependent. In addition, ML329 significantly decreased 3D-spheroid-forming ability, though the effects of ML329 were variable among the MM cell lines. Furthermore, the mRNA expression levels of selected genes, including STAT3 as a possible regulator of 3D spheroid formation, KRAS and SOX2 as oncogenic-signaling-related factors, PCG1a as the main regulator of mitochondrial biogenesis, and HIF1a as a major hypoxia transcriptional regulator, fluctuated among the MM cell lines, possibly supporting the diverse ML329 effects mentioned above. The findings of diverse ML329 effects on various MM cell lines suggest that MITF-associated biological activities are different among various types of MM. Full article
(This article belongs to the Special Issue Melanoma: Pathology and Translational Research)
Show Figures

Figure 1

Back to TopTop