Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = MIKE 3 FM (HD & TR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2891 KiB  
Article
On the Hydrodynamic Geometry of Flow-Through versus Restricted Lagoons
by Nikolaos Th. Fourniotis, Georgios M. Horsch and Georgios A. Leftheriotis
Water 2018, 10(3), 237; https://doi.org/10.3390/w10030237 - 25 Feb 2018
Cited by 19 | Viewed by 5020
Abstract
The classification of a lagoon as a restricted lagoon is shown to depend not solely on its geometry but also on the tidal hydraulics. By numerically simulating the tidal exchange of two lagoons of similar geometrical dimensions, the Nidova lagoon and the Papas [...] Read more.
The classification of a lagoon as a restricted lagoon is shown to depend not solely on its geometry but also on the tidal hydraulics. By numerically simulating the tidal exchange of two lagoons of similar geometrical dimensions, the Nidova lagoon and the Papas lagoon, in Western Greece, subject to very similar tidal forcing, applied to the two tidal inlets in the first case and three in the second, very different residence times are found, namely 2.5 days for the Nidova and 25–30 days for the Papas lagoon. This large difference is attributed to the fact that whereas the Papas lagoon functions as a typical restricted lagoon, in which the water renewal is achieved by mixing in the lagoon of the tidal prism water exchanged within a tidal cycle, the Nidova lagoon functions as a flow-through system because of the differential arrival of the tide at its two tidal inlets. It is suggested that this way of enhancing the flushing rate of a lagoon be considered, whenever possible, when creating a new tidal inlet to the lagoon. Full article
(This article belongs to the Special Issue Turbulence in River and Maritime Hydraulics)
Show Figures

Figure 1

Back to TopTop