Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Limoniastrum monopetalum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3650 KiB  
Article
Seasonal Biochemical Variations in Mediterranean Halophytes and Salt-Tolerant Plants: Targeting Sustainable Innovations in Ruminant Health
by Marta Oliveira, Catarina Guerreiro Pereira, Viana Castañeda-Loaiza, Maria João Rodrigues, Nuno R. Neng, Hervé Hoste, Karim Ben Hamed and Luísa Custódio
Appl. Sci. 2025, 15(14), 7625; https://doi.org/10.3390/app15147625 - 8 Jul 2025
Viewed by 482
Abstract
Climate change intensifies water scarcity and soil salinization, threatening agriculture and livestock systems, especially in arid Mediterranean regions. Halophytes and salt-tolerant plants offer sustainable alternatives to support ruminant health and productivity where traditional crops fail, helping mitigate climate impacts. This work evaluated seasonality [...] Read more.
Climate change intensifies water scarcity and soil salinization, threatening agriculture and livestock systems, especially in arid Mediterranean regions. Halophytes and salt-tolerant plants offer sustainable alternatives to support ruminant health and productivity where traditional crops fail, helping mitigate climate impacts. This work evaluated seasonality effects on the biochemical properties, including proximate composition, minerals, antioxidant properties, and the phenolic composition of the aerial organs of halophytes and salt-tolerant species, aiming at their future exploitation in ruminant production as novel nutraceutical or phytotherapeutic products. Target species included four halophytic species according to the eHaloph database (Calystegia soldanella (L.) R. Br. 1810, Medicago marina L. 1753, Plantago coronopus L. 1753, and Limoniastrum monopetalum (L.) Boiss. 1848) and five salt-tolerant plants (Pistacia lentiscus L. 1753, Cladium mariscus (L.) Pohl 1809, Inula crithmoides L. (syn. Limbarda crithmoides Dumort. 1827), Helichrysum italicum subsp. picardii (Boiss. & Reut.) Franco 1984, and Crucianella maritima L. 1753). H. italicum, M. marina, and C. soldanella appear well-suited for nutraceutical applications, while P. lentiscus, L. monopetalum, and C. mariscus hold promise for the development of, for example, phytotherapeutic products. This research underscores the significance of seasonal and species-specific variations in nutrient and phytochemical composition, displaying a range of opportunities for novel, sustainable, and tailored solutions to ruminant production systems in arid environments. Full article
(This article belongs to the Special Issue Recent Advances in Halophytes Plants)
Show Figures

Figure 1

25 pages, 12439 KiB  
Article
Limoniastrum monopetalum–Mediated Nanoparticles and Biomedicines: In Silico Study and Molecular Prediction of Biomolecules
by Afrah E. Mohammed, Sahar S. Alghamdi, Nada K. Alharbi, Fatma Alshehri, Rasha Saad Suliman, Fahad Al-Dhabaan and Maha Alharbi
Molecules 2022, 27(22), 8014; https://doi.org/10.3390/molecules27228014 - 18 Nov 2022
Cited by 6 | Viewed by 2209
Abstract
An in silico approach applying computer-simulated models helps enhance biomedicines by sightseeing the pharmacology of potential therapeutics. Currently, an in silico study combined with in vitro assays investigated the antimicrobial ability of Limoniastrum monopetalum and silver nanoparticles (AgNPs) fabricated by its aid. AgNPs [...] Read more.
An in silico approach applying computer-simulated models helps enhance biomedicines by sightseeing the pharmacology of potential therapeutics. Currently, an in silico study combined with in vitro assays investigated the antimicrobial ability of Limoniastrum monopetalum and silver nanoparticles (AgNPs) fabricated by its aid. AgNPs mediated by L. monopetalum were characterized using FTIR, TEM, SEM, and DLS. L. monopetalum metabolites were detected by QTOF–LCMS and assessed using an in silico study for pharmacological properties. The antibacterial ability of an L. monopetalum extract and AgNPs was investigated. PASS Online predictions and the swissADME web server were used for antibacterial activity and potential molecular target metabolites, respectively. Spherical AgNPs with a 68.79 nm average size diameter were obtained. Twelve biomolecules (ferulic acid, trihydroxy-octadecenoic acid, catechin, pinoresinol, gallic acid, myricetin, 6-hydroxyluteolin, 6,7-dihydroxy-5-methoxy 7-O-β-d-glucopyranoside, methyl gallate, isorhamnetin, chlorogenic acid, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-oxo-4H-chromen-3-yl 6-O-(6-deoxy-β-l-mannopyranosyl)-β-d-glucopyranoside) were identified. The L. monopetalum extract and AgNPs displayed antibacterial effects. The computational study suggested that L. Monopetalum metabolites could hold promising antibacterial activity with minimal toxicity and an acceptable pharmaceutical profile. The in silico approach indicated that metabolites 8 and 12 have the highest antibacterial activity, and swissADME web server results suggested the CA II enzyme as a potential molecular target for both metabolites. Novel therapeutic agents could be discovered using in silico molecular target prediction combined with in vitro studies. Among L. Monopetalum metabolites, metabolite 12 could serve as a starting point for potential antibacterial treatment for several human bacterial infections. Full article
(This article belongs to the Special Issue Metal-Based Nanoparticles Synthesis and Antimicrobial Applications)
Show Figures

Figure 1

29 pages, 14661 KiB  
Article
Screening of the High-Rhizosphere Competent Limoniastrum monopetalum’ Culturable Endophyte Microbiota Allows the Recovery of Multifaceted and Versatile Biocontrol Agents
by Houda Ben Slama, Mohamed Ali Triki, Ali Chenari Bouket, Fedia Ben Mefteh, Faizah N. Alenezi, Lenka Luptakova, Hafsa Cherif-Silini, Armelle Vallat, Tomasz Oszako, Neji Gharsallah and Lassaad Belbahri
Microorganisms 2019, 7(8), 249; https://doi.org/10.3390/microorganisms7080249 - 9 Aug 2019
Cited by 30 | Viewed by 6327
Abstract
Halophyte Limoniastrum monopetalum, an evergreen shrub inhabiting the Mediterranean region, has well-documented phytoremediation potential for metal removal from polluted sites. It is also considered to be a medicinal halophyte with potent activity against plant pathogens. Therefore, L. monopetalum may be a suitable [...] Read more.
Halophyte Limoniastrum monopetalum, an evergreen shrub inhabiting the Mediterranean region, has well-documented phytoremediation potential for metal removal from polluted sites. It is also considered to be a medicinal halophyte with potent activity against plant pathogens. Therefore, L. monopetalum may be a suitable candidate for isolating endophytic microbiota members that provide plant growth promotion (PGP) and resistance to abiotic stresses. Selected for biocontrol abilities, these endophytes may represent multifaceted and versatile biocontrol agents, combining pathogen biocontrol in addition to PGP and plant protection against abiotic stresses. In this study 117 root culturable bacterial endophytes, including Gram-positive (Bacillus and Brevibacillus), Gram-negative (Proteus, Providencia, Serratia, Pantoea, Klebsiella, Enterobacter and Pectobacterium) and actinomycete Nocardiopsis genera have been recovered from L. monopetalum. The collection exhibited high levels of biocontrol abilities against bacterial (Agrobacterium tumefaciens MAT2 and Pectobacterium carotovorum MAT3) and fungal (Alternaria alternata XSZJY-1, Rhizoctonia bataticola MAT1 and Fusarium oxysporum f. sp. radicis lycopersici FORL) pathogens. Several bacteria also showed PGP capacity and resistance to antibiotics and metals. A highly promising candidate Bacillus licheniformis LMRE 36 with high PGP, biocontrol, metal and antibiotic, resistance was subsequently tested in planta (potato and olive trees) for biocontrol of a collection of 14 highly damaging Fusarium species. LMRE 36 proved very effective against the collection in both species and against an emerging Fusarium sp. threatening olive trees culture in nurseries. These findings provide a demonstration of our pyramiding strategy. Our strategy was effective in combining desirable traits in biocontrol agents towards broad-spectrum resistance against pathogens and protection of crops from abiotic stresses. Stacking multiple desirable traits into a single biocontrol agent is achieved by first, careful selection of a host for endophytic microbiota recovery; second, stringent in vitro selection of candidates from the collection; and third, application of the selected biocontrol agents in planta experiments. That pyramiding strategy could be successfully used to mitigate effects of diverse biotic and abiotic stresses on plant growth and productivity. It is anticipated that the strategy will provide a new generation of biocontrol agents by targeting the microbiota of plants in hostile environments. Full article
(This article belongs to the Special Issue Plant Control of Symbiotic Microbe Behavior and Reproduction)
Show Figures

Graphical abstract

10 pages, 349 KiB  
Article
Evaluation of Antioxidant Status of Two Limoniastrum Species Growing Wild in Tunisian Salty Lands
by Mohamed Debouba, Sami Zouari and Nacim Zouari
Antioxidants 2013, 2(3), 122-131; https://doi.org/10.3390/antiox2030122 - 2 Aug 2013
Cited by 12 | Viewed by 6637
Abstract
We aim to highlight the differential antioxidant status of Limoniastrum guyonianum and Limoniastrum monopetalum in relation to their respective chemical and location characteristics. Metabolite analysis revealed similar contents in phenolic, flavonoïds, sugars and chlorophyll in the two species’ leaves. Higher amounts of proline [...] Read more.
We aim to highlight the differential antioxidant status of Limoniastrum guyonianum and Limoniastrum monopetalum in relation to their respective chemical and location characteristics. Metabolite analysis revealed similar contents in phenolic, flavonoïds, sugars and chlorophyll in the two species’ leaves. Higher amounts of proline (Pro), carotenoïds (Carot), sodium (Na) and potassium (K) were measured in L. monopetalum leaves relative to L. guyonianum ones. While the two Limoniastrum species have similar free radical DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging activity, L. guyonianum showed more than two-fold higher ferrous ions chelating activity relative to L. monopetalum. However, highest reducing power activity was observed in L. monopetalum. Thiobarbituric acid-reactive substances (TBARS) determination indicated that L. monopetalum behave better lipid membrane integrity relative to L. guyonianum. These findings suggested that the lesser stressful state of L. monopetalum was related to higher metabolites accumulation and reducing capacity compared to L. guyonianum. Full article
(This article belongs to the Special Issue Plant Antioxidants)
Show Figures

Figure 1

Back to TopTop