Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Lacticaseibacillus paracasei LT12

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4205 KiB  
Article
Lacticaseibacillus paracasei LT12—A Probiotic Strain That Reduces Hyperuricemia via Inhibiting XO Activity and Regulating Renal Uric Acid Transportation Protein
by Wei-Ting Tseng, Xiang-Ru Kong, Yu-Tsung Han, Wen-Yang Lin, Deyi Yin, Lei Du, Jingli Xie and Tien-Hung Chang
Fermentation 2025, 11(2), 96; https://doi.org/10.3390/fermentation11020096 - 13 Feb 2025
Viewed by 1277
Abstract
Hyperuricemia (HUA), characterized by elevated serum uric acid (UA) levels, is a key risk factor for gout. In human purine metabolism, approximately 70% of UA is excreted via the kidneys, while the remaining 30% is eliminated through the intestines. Thus, the intestinal microbiota [...] Read more.
Hyperuricemia (HUA), characterized by elevated serum uric acid (UA) levels, is a key risk factor for gout. In human purine metabolism, approximately 70% of UA is excreted via the kidneys, while the remaining 30% is eliminated through the intestines. Thus, the intestinal microbiota plays a crucial role in regulating UA metabolism through the gut–kidney axis. However, the detailed mechanisms by which the microbiota reduces serum UA levels and supports kidney health remain unclear. In this study, researchers investigated the potential of Lacticaseibacillus paracasei LT12, a strain exhibiting xanthine oxidase (XO) inhibition activity and the ability to degrade inosine and guanosine, in reducing UA levels in a hyperuricemia mouse model. Hyperuricemia was induced by gavaging mice with 300 mg/kg of potassium oxonate and hypoxanthine for two weeks. The subsequent 4-week intervention included five groups: a normal control group, a model group, a positive control group receiving allopurinol (5 mg/kg body weight), a low-dose LT12 group (1.5 × 10⁶ CFU/kg), and a high-dose LT12 group (4.5 × 10⁹ CFU/kg). The results demonstrated that L. paracasei LT12 effectively reduced serum UA levels, inhibited serum and hepatic XO activity, regulated renal uric acid transporter proteins (OAT1, URAT1, GLUT9, and ABCG2), and reduced the abundance of the intestinal pathogenic bacterium Corynebacterium stationis in both the low-dose and high-dose groups. Notably, only the high-dose LT12 group significantly increased gut butyrate levels. In conclusion, L. paracasei LT12 shows promise as a potential probiotic strain for ameliorating hyperuricemia. Future human clinical studies are needed to validate its efficacy. Full article
Show Figures

Figure 1

21 pages, 1618 KiB  
Article
Rehydration before Application Improves Functional Properties of Lyophilized Lactiplantibacillus plantarum HAC03
by Karina Arellano-Ayala, Juhwan Lim, Subin Yeo, Jorge Enrique Vazquez Bucheli, Svetoslav Dimitrov Todorov, Yosep Ji and Wilhelm Heinrich Holzapfel
Microorganisms 2021, 9(5), 1013; https://doi.org/10.3390/microorganisms9051013 - 8 May 2021
Cited by 15 | Viewed by 4402
Abstract
Preservation of probiotics by lyophilization is considered a method of choice for developing stable products. However, both direct consumption and reconstitution of dehydrated probiotic preparations before application “compromise” the survival and functional characteristics of the microorganisms under the stress of the upper gastro-intestinal [...] Read more.
Preservation of probiotics by lyophilization is considered a method of choice for developing stable products. However, both direct consumption and reconstitution of dehydrated probiotic preparations before application “compromise” the survival and functional characteristics of the microorganisms under the stress of the upper gastro-intestinal tract. We evaluated the impact of different food additives on the viability, mucin adhesion, and zeta potential of a freeze-dried putative probiotic, Lactiplantibacillus (Lp.) plantarum HAC03. HAC03-compatible ingredients for the formulation of ten rehydration mixtures could be selected. Elevated efficacy was achieved by the B-active formulation, a mixture of non-protein nitrogen compounds, sugars, and salts. The survival of Lp. plantarum HAC03 increased by 36.36% compared rehydration with distilled water (4.92%) after passing simulated gastro-intestinal stress conditions. Cell viability determined by plate counting was confirmed by flow cytometry. B-active formulation also influenced Lp. plantarum HAC03 functionality by increasing its adherence to a Caco-2 cell-line and by changing the bacterial surface charge, measured as zeta potential.Hydrophobicity, mucin adhesion and immunomodulatory properties of Lp. plantarum HAC03 were not affected by the B-active formulation. The rehydration medium also effectively protected Lp. plantarum ATCC14917, Lp. plantarum 299v, Latilactobacillus sakei (Lt.) HAC11, Lacticaseibacillus (Lc.) paracasei 532, Enterococcus faecium 200, and Lc. rhamnosus BFE5263. Full article
(This article belongs to the Special Issue Benefical Properties and Safety of Lactic Acid Bacteria)
Show Figures

Figure 1

Back to TopTop