Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = LR-DDoS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 732 KiB  
Article
Software-Defined-Networking-Based One-versus-Rest Strategy for Detecting and Mitigating Distributed Denial-of-Service Attacks in Smart Home Internet of Things Devices
by Neder Karmous, Mohamed Ould-Elhassen Aoueileyine, Manel Abdelkader, Lamia Romdhani and Neji Youssef
Sensors 2024, 24(15), 5022; https://doi.org/10.3390/s24155022 - 3 Aug 2024
Cited by 8 | Viewed by 2342
Abstract
The number of connected devices or Internet of Things (IoT) devices has rapidly increased. According to the latest available statistics, in 2023, there were approximately 17.2 billion connected IoT devices; this is expected to reach 25.4 billion IoT devices by 2030 and grow [...] Read more.
The number of connected devices or Internet of Things (IoT) devices has rapidly increased. According to the latest available statistics, in 2023, there were approximately 17.2 billion connected IoT devices; this is expected to reach 25.4 billion IoT devices by 2030 and grow year over year for the foreseeable future. IoT devices share, collect, and exchange data via the internet, wireless networks, or other networks with one another. IoT interconnection technology improves and facilitates people’s lives but, at the same time, poses a real threat to their security. Denial-of-Service (DoS) and Distributed Denial-of-Service (DDoS) attacks are considered the most common and threatening attacks that strike IoT devices’ security. These are considered to be an increasing trend, and it will be a major challenge to reduce risk, especially in the future. In this context, this paper presents an improved framework (SDN-ML-IoT) that works as an Intrusion and Prevention Detection System (IDPS) that could help to detect DDoS attacks with more efficiency and mitigate them in real time. This SDN-ML-IoT uses a Machine Learning (ML) method in a Software-Defined Networking (SDN) environment in order to protect smart home IoT devices from DDoS attacks. We employed an ML method based on Random Forest (RF), Logistic Regression (LR), k-Nearest Neighbors (kNN), and Naive Bayes (NB) with a One-versus-Rest (OvR) strategy and then compared our work to other related works. Based on the performance metrics, such as confusion matrix, training time, prediction time, accuracy, and Area Under the Receiver Operating Characteristic curve (AUC-ROC), it was established that SDN-ML-IoT, when applied to RF, outperforms other ML algorithms, as well as similar approaches related to our work. It had an impressive accuracy of 99.99%, and it could mitigate DDoS attacks in less than 3 s. We conducted a comparative analysis of various models and algorithms used in the related works. The results indicated that our proposed approach outperforms others, showcasing its effectiveness in both detecting and mitigating DDoS attacks within SDNs. Based on these promising results, we have opted to deploy SDN-ML-IoT within the SDN. This implementation ensures the safeguarding of IoT devices in smart homes against DDoS attacks within the network traffic. Full article
(This article belongs to the Special Issue AI Technology for Cybersecurity and IoT Applications)
Show Figures

Figure 1

21 pages, 9537 KiB  
Article
FSCB-IDS: Feature Selection and Minority Class Balancing for Attacks Detection in VANETs
by Sara Amaouche, Azidine Guezzaz, Said Benkirane, Mourade Azrour, Sohaib Bin Altaf Khattak, Haleem Farman and Moustafa M. Nasralla
Appl. Sci. 2023, 13(13), 7488; https://doi.org/10.3390/app13137488 - 25 Jun 2023
Cited by 39 | Viewed by 2355
Abstract
Vehicular ad hoc networks (VANETs) are used for vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communications. They are a special type of mobile ad hoc networks (MANETs) that can share useful information to improve road traffic and safety. In VANETs, vehicles [...] Read more.
Vehicular ad hoc networks (VANETs) are used for vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communications. They are a special type of mobile ad hoc networks (MANETs) that can share useful information to improve road traffic and safety. In VANETs, vehicles are interconnected through a wireless medium, making the network susceptible to various attacks, such as Denial of Service (DoS), Distributed Denial of Service (DDoS), or even black hole attacks that exploit the wireless medium to disrupt the network. These attacks degrade the network performance of VANETs and prevent legitimate users from accessing resources. VANETs face unique challenges due to the fast mobility of vehicles and dynamic changes in network topology. The high-speed movement of vehicles results in frequent alterations in the network structure, posing difficulties in establishing and maintaining stable communication. Moreover, the dynamic nature of VANETs, with vehicles joining and leaving the network regularly, adds complexity to implementing effective security measures. These inherent constraints necessitate the development of robust and efficient solutions tailored to VANETs, ensuring secure and reliable communication in dynamic and rapidly evolving environments. Therefore, securing communication in VANETs is a crucial requirement. Traditional security countermeasures are not pertinent to autonomous vehicles. However, many machine learning (ML) technologies are being utilized to classify malicious packet information and a variety of solutions have been suggested to improve security in VANETs. In this paper, we propose an enhanced intrusion detection framework for VANETs that leverages mutual information to select the most relevant features for building an effective model and synthetic minority oversampling (SMOTE) to deal with the class imbalance problem. Random Forest (RF) is applied as our classifier, and the proposed method is compared with different ML techniques such as logistic regression (LR), K-Nearest Neighbor (KNN), decision tree (DT), and Support Vector Machine (SVM). The model is tested on three datasets, namely ToN-IoT, NSL-KDD, and CICIDS2017, addressing challenges such as missing values, unbalanced data, and categorical values. Our model demonstrated great performance in comparison to other models. It achieved high accuracy, precision, recall, and f1 score, with a 100% accuracy rate on the ToN-IoT dataset and 99.9% on both NSL-KDD and CICIDS2017 datasets. Furthermore, the ROC curve analysis demonstrated our model’s exceptional performance, achieving a 100% AUC score. Full article
(This article belongs to the Special Issue Data Security and Privacy in Mobile Cloud Computing)
Show Figures

Figure 1

17 pages, 2095 KiB  
Article
Machine Learning-Based Dynamic Attribute Selection Technique for DDoS Attack Classification in IoT Networks
by Subhan Ullah, Zahid Mahmood, Nabeel Ali, Tahir Ahmad and Attaullah Buriro
Computers 2023, 12(6), 115; https://doi.org/10.3390/computers12060115 - 29 May 2023
Cited by 24 | Viewed by 4325
Abstract
The exponential growth of the Internet of Things (IoT) has led to the rapid expansion of interconnected systems, which has also increased the vulnerability of IoT devices to security threats such as distributed denial-of-service (DDoS) attacks. In this paper, we propose a machine [...] Read more.
The exponential growth of the Internet of Things (IoT) has led to the rapid expansion of interconnected systems, which has also increased the vulnerability of IoT devices to security threats such as distributed denial-of-service (DDoS) attacks. In this paper, we propose a machine learning pipeline that specifically addresses the issue of DDoS attack detection in IoT networks. Our approach comprises of (i) a processing module to prepare the data for further analysis, (ii) a dynamic attribute selection module that selects the most adaptive and productive features and reduces the training time, and (iii) a classification module to detect DDoS attacks. We evaluate the effectiveness of our approach using the CICI-IDS-2018 dataset and five powerful yet simple machine learning classifiers—Decision Tree (DT), Gaussian Naive Bayes, Logistic Regression (LR), K-Nearest Neighbor (KNN), and Random Forest (RF). Our results demonstrate that DT outperforms its counterparts and achieves up to 99.98% accuracy in just 0.18 s of CPU time. Our approach is simple, lightweight, and accurate for detecting DDoS attacks in IoT networks. Full article
(This article belongs to the Special Issue Software-Defined Internet of Everything)
Show Figures

Figure 1

34 pages, 6000 KiB  
Article
An Adaptive Real-Time Malicious Node Detection Framework Using Machine Learning in Vehicular Ad-Hoc Networks (VANETs)
by Kanwal Rashid, Yousaf Saeed, Abid Ali, Faisal Jamil, Reem Alkanhel and Ammar Muthanna
Sensors 2023, 23(5), 2594; https://doi.org/10.3390/s23052594 - 26 Feb 2023
Cited by 60 | Viewed by 5481
Abstract
Modern vehicle communication development is a continuous process in which cutting-edge security systems are required. Security is a main problem in the Vehicular Ad Hoc Network (VANET). Malicious node detection is one of the critical issues found in the VANET environment, with the [...] Read more.
Modern vehicle communication development is a continuous process in which cutting-edge security systems are required. Security is a main problem in the Vehicular Ad Hoc Network (VANET). Malicious node detection is one of the critical issues found in the VANET environment, with the ability to communicate and enhance the mechanism to enlarge the field. The vehicles are attacked by malicious nodes, especially DDoS attack detection. Several solutions are presented to overcome the issue, but none are solved in a real-time scenario using machine learning. During DDoS attacks, multiple vehicles are used in the attack as a flood on the targeted vehicle, so communication packets are not received, and replies to requests do not correspond in this regard. In this research, we selected the problem of malicious node detection and proposed a real-time malicious node detection system using machine learning. We proposed a distributed multi-layer classifier and evaluated the results using OMNET++ and SUMO with machine learning classification using GBT, LR, MLPC, RF, and SVM models. The group of normal vehicles and attacking vehicles dataset is considered to apply the proposed model. The simulation results effectively enhance the attack classification with an accuracy of 99%. Under LR and SVM, the system achieved 94 and 97%, respectively. The RF and GBT achieved better performance with 98% and 97% accuracy values, respectively. Since we have adopted Amazon Web Services, the network’s performance has improved because training and testing time do not increase when we include more nodes in the network. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

32 pages, 9302 KiB  
Article
A DDoS Attack Detection Method Based on Natural Selection of Features and Models
by Ruikui Ma, Xuebin Chen and Ran Zhai
Electronics 2023, 12(4), 1059; https://doi.org/10.3390/electronics12041059 - 20 Feb 2023
Cited by 13 | Viewed by 4754
Abstract
Distributed Denial of Service (DDoS) is still one of the main threats to network security today. Attackers are able to run DDoS in simple steps and with high efficiency to slow down or block users’ access to services. In this paper, we propose [...] Read more.
Distributed Denial of Service (DDoS) is still one of the main threats to network security today. Attackers are able to run DDoS in simple steps and with high efficiency to slow down or block users’ access to services. In this paper, we propose a framework based on feature and model selection (FAMS), which is used for detecting DDoS attacks with the aim of identifying the features and models with a high generalization capability, high prediction accuracy, and short prediction time. The FAMS framework is divided into four main phases. The first phase is data pre-processing, including operations such as feature coding, outlier processing, duplicate elimination, data balancing, and normalization. In the second stage, 79 features are extracted from the dataset and selected by the feature selection algorithms filter, wrapper, embedded, variance, mutual information, backward elimination, Lasso.L1, and random forest. The purpose of feature selection is to simplify the model, avoid dimensional disasters, reduce computational costs, and reduce the prediction time. The third stage is model selection, which aims to select the most ideal algorithm from GD, SVM, LR, RF, HVG, SVG, HVR, and SVR using a model selection algorithm for the selected 21 features, and the results show that RF is far ahead in all evaluation indexes compared to the other models. The fourth stage is model optimization, which aims to further improve the performance of the RF algorithm in detecting DDoS attacks by optimizing the parameters max_samples, max_depth, n_estimators for the initially selected RF by the RF optimization algorithm. Finally, by testing the 100,000 CIC-IDS2018, CIC-IDS2017, and CIC-DoS2016 synthetic datasets, the results show that all the results have achieved excellent performance in the same category. Moreover, the framework also shows an excellent generalization performance by testing over 1 million synthetic datasets and over 330,000 CIC-DDoS2019 datasets. Full article
Show Figures

Figure 1

21 pages, 1519 KiB  
Article
Low Rate DDoS Detection Using Weighted Federated Learning in SDN Control Plane in IoT Network
by Muhammad Nadeem Ali, Muhammad Imran, Muhammad Salah ud din and Byung-Seo Kim
Appl. Sci. 2023, 13(3), 1431; https://doi.org/10.3390/app13031431 - 21 Jan 2023
Cited by 53 | Viewed by 4704
Abstract
The Internet of things (IoT) has opened new dimensions of novel services and computing power for modern living standards by introducing innovative and smart solutions. Due to the extensive usage of these services, IoT has spanned numerous devices and communication entities, which makes [...] Read more.
The Internet of things (IoT) has opened new dimensions of novel services and computing power for modern living standards by introducing innovative and smart solutions. Due to the extensive usage of these services, IoT has spanned numerous devices and communication entities, which makes the management of the network a complex challenge. Hence it is urgently needed to redefine the management of the IoT network. Software-defined networking (SDN) intrinsic programmability and centralization features simplify network management, facilitate network abstraction, ease network evolution, has the potential to manage the IoT network. SDN’s centralized control plane promotes efficient network resource management by separating the control and data plane and providing a global picture of the underlying network topology. Apart from the inherent benefits, the centralized SDN architecture also brings serious security threats such as spoofing, sniffing, brute force, API exploitation, and denial of service, and requires significant attention to guarantee a secured network. Among these security threats, Distributed Denial of Service (DDoS) and its variant Low-Rate DDoS (LR-DDoS), is one of the most challenging as the fraudulent user generates malicious traffic at a low rate which is extremely difficult to detect and defend. Machine Learning (ML), especially Federated Learning (FL), has shown remarkable success in detecting and defending against such attacks. In this paper, we adopted Weighted Federated Learning (WFL) to detect Low-Rate DDoS (LR-DDoS) attacks. The extensive MATLAB experimentation and evaluation revealed that the proposed work ignites the LR-DDoS detection accuracy compared with the individual Neural Networks (ANN) training algorithms, existing packet analysis-based, and machine learning approaches. Full article
Show Figures

Figure 1

22 pages, 2886 KiB  
Article
Cyber Threat Intelligence for IoT Using Machine Learning
by Shailendra Mishra, Aiman Albarakati and Sunil Kumar Sharma
Processes 2022, 10(12), 2673; https://doi.org/10.3390/pr10122673 - 12 Dec 2022
Cited by 26 | Viewed by 5395
Abstract
The Internet of Things (IoT) is a technological revolution that enables human-to-human and machine-to-machine communication for virtual data exchange. The IoT allows us to identify, locate, and access the various things and objects around us using low-cost sensors. The Internet of Things offers [...] Read more.
The Internet of Things (IoT) is a technological revolution that enables human-to-human and machine-to-machine communication for virtual data exchange. The IoT allows us to identify, locate, and access the various things and objects around us using low-cost sensors. The Internet of Things offers many benefits but also raises many issues, especially in terms of privacy and security. Appropriate solutions must be found to these challenges, and privacy and security are top priorities in the IoT. This study identifies possible attacks on different types of networks as well as their countermeasures. This study provides valuable insights to vulnerability researchers and IoT network protection specialists because it teaches them how to avoid problems in real networks by simulating them and developing proactive solutions. IoT anomalies were detected by simulating message queuing telemetry transport (MQTT) over a virtual network. Utilizing DDoS attacks and some machine learning algorithms such as support vector machine (SVM), random forest (RF), k-nearest neighbors (KNN) and logistic regression (LR), as well as an artificial neural network, multilayer perceptron (MLP), naive Bayes (NB) and decision tree (DT) are used to detect and mitigate the attack. The proposed approach uses a dataset of 4998 records and 34 features with 8 classes of network traffic. The classifier RF showed the best performance with 99.94% accuracy. An intrusion detection system using Snort was implemented. The results provided theoretical proof of applicability and feasibility. Full article
Show Figures

Figure 1

15 pages, 322 KiB  
Article
Machine-Learning-Based DDoS Attack Detection Using Mutual Information and Random Forest Feature Importance Method
by Mona Alduailij, Qazi Waqas Khan, Muhammad Tahir, Muhammad Sardaraz, Mai Alduailij and Fazila Malik
Symmetry 2022, 14(6), 1095; https://doi.org/10.3390/sym14061095 - 27 May 2022
Cited by 122 | Viewed by 12920
Abstract
Cloud computing facilitates the users with on-demand services over the Internet. The services are accessible from anywhere at any time. Despite the valuable services, the paradigm is, also, prone to security issues. A Distributed Denial of Service (DDoS) attack affects the availability of [...] Read more.
Cloud computing facilitates the users with on-demand services over the Internet. The services are accessible from anywhere at any time. Despite the valuable services, the paradigm is, also, prone to security issues. A Distributed Denial of Service (DDoS) attack affects the availability of cloud services and causes security threats to cloud computing. Detection of DDoS attacks is necessary for the availability of services for legitimate users. The topic has been studied by many researchers, with better accuracy for different datasets. This article presents a method for DDoS attack detection in cloud computing. The primary objective of this article is to reduce misclassification error in DDoS detection. In the proposed work, we select the most relevant features, by applying two feature selection techniques, i.e., the Mutual Information (MI) and Random Forest Feature Importance (RFFI) methods. Random Forest (RF), Gradient Boosting (GB), Weighted Voting Ensemble (WVE), K Nearest Neighbor (KNN), and Logistic Regression (LR) are applied to selected features. The experimental results show that the accuracy of RF, GB, WVE, and KNN with 19 features is 0.99. To further study these methods, misclassifications of the methods are analyzed, which lead to more accurate measurements. Extensive experiments conclude that the RF performed well in DDoS attack detection and misclassified only one attack as normal. Comparative results are presented to validate the proposed method. Full article
(This article belongs to the Special Issue Cloud Computing and Symmetry: Latest Advances and Prospects)
Show Figures

Figure 1

28 pages, 1525 KiB  
Article
Adaptive Machine Learning Based Distributed Denial-of-Services Attacks Detection and Mitigation System for SDN-Enabled IoT
by Muhammad Aslam, Dengpan Ye, Aqil Tariq, Muhammad Asad, Muhammad Hanif, David Ndzi, Samia Allaoua Chelloug, Mohamed Abd Elaziz, Mohammed A. A. Al-Qaness and Syeda Fizzah Jilani
Sensors 2022, 22(7), 2697; https://doi.org/10.3390/s22072697 - 31 Mar 2022
Cited by 108 | Viewed by 7141
Abstract
The development of smart network infrastructure of the Internet of Things (IoT) faces the immense threat of sophisticated Distributed Denial-of-Services (DDoS) security attacks. The existing network security solutions of enterprise networks are significantly expensive and unscalable for IoT. The integration of recently developed [...] Read more.
The development of smart network infrastructure of the Internet of Things (IoT) faces the immense threat of sophisticated Distributed Denial-of-Services (DDoS) security attacks. The existing network security solutions of enterprise networks are significantly expensive and unscalable for IoT. The integration of recently developed Software Defined Networking (SDN) reduces a significant amount of computational overhead for IoT network devices and enables additional security measurements. At the prelude stage of SDN-enabled IoT network infrastructure, the sampling based security approach currently results in low accuracy and low DDoS attack detection. In this paper, we propose an Adaptive Machine Learning based SDN-enabled Distributed Denial-of-Services attacks Detection and Mitigation (AMLSDM) framework. The proposed AMLSDM framework develops an SDN-enabled security mechanism for IoT devices with the support of an adaptive machine learning classification model to achieve the successful detection and mitigation of DDoS attacks. The proposed framework utilizes machine learning algorithms in an adaptive multilayered feed-forwarding scheme to successfully detect the DDoS attacks by examining the static features of the inspected network traffic. In the proposed adaptive multilayered feed-forwarding framework, the first layer utilizes Support Vector Machine (SVM), Naive Bayes (NB), Random Forest (RF), k-Nearest Neighbor (kNN), and Logistic Regression (LR) classifiers to build a model for detecting DDoS attacks from the training and testing environment-specific datasets. The output of the first layer passes to an Ensemble Voting (EV) algorithm, which accumulates the performance of the first layer classifiers. In the third layer, the adaptive frameworks measures the real-time live network traffic to detect the DDoS attacks in the network traffic. The proposed framework utilizes a remote SDN controller to mitigate the detected DDoS attacks over Open Flow (OF) switches and reconfigures the network resources for legitimate network hosts. The experimental results show the better performance of the proposed framework as compared to existing state-of-the art solutions in terms of higher accuracy of DDoS detection and low false alarm rate. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

15 pages, 1284 KiB  
Article
Security Analysis of DDoS Attacks Using Machine Learning Algorithms in Networks Traffic
by Rami J. Alzahrani and Ahmed Alzahrani
Electronics 2021, 10(23), 2919; https://doi.org/10.3390/electronics10232919 - 25 Nov 2021
Cited by 71 | Viewed by 8023
Abstract
The recent advance in information technology has created a new era named the Internet of Things (IoT). This new technology allows objects (things) to be connected to the Internet, such as smart TVs, printers, cameras, smartphones, smartwatches, etc. This trend provides new services [...] Read more.
The recent advance in information technology has created a new era named the Internet of Things (IoT). This new technology allows objects (things) to be connected to the Internet, such as smart TVs, printers, cameras, smartphones, smartwatches, etc. This trend provides new services and applications for many users and enhances their lifestyle. The rapid growth of the IoT makes the incorporation and connection of several devices a predominant procedure. Although there are many advantages of IoT devices, there are different challenges that come as network anomalies. In this research, the current studies in the use of deep learning (DL) in DDoS intrusion detection have been presented. This research aims to implement different Machine Learning (ML) algorithms in WEKA tools to analyze the detection performance for DDoS attacks using the most recent CICDDoS2019 datasets. CICDDoS2019 was found to be the model with best results. This research has used six different types of ML algorithms which are K_Nearest_Neighbors (K-NN), super vector machine (SVM), naïve bayes (NB), decision tree (DT), random forest (RF) and logistic regression (LR). The best accuracy result in the presented evaluation was achieved when utilizing the Decision Tree (DT) and Random Forest (RF) algorithms, 99% and 99%, respectively. However, the DT is better than RF because it has a shorter computation time, 4.53 s and 84.2 s, respectively. Finally, open issues for further research in future work are presented. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

32 pages, 373 KiB  
Article
An Experimental Analysis of Attack Classification Using Machine Learning in IoT Networks
by Andrew Churcher, Rehmat Ullah, Jawad Ahmad, Sadaqat ur Rehman, Fawad Masood, Mandar Gogate, Fehaid Alqahtani, Boubakr Nour and William J. Buchanan
Sensors 2021, 21(2), 446; https://doi.org/10.3390/s21020446 - 10 Jan 2021
Cited by 193 | Viewed by 11788
Abstract
In recent years, there has been a massive increase in the amount of Internet of Things (IoT) devices as well as the data generated by such devices. The participating devices in IoT networks can be problematic due to their resource-constrained nature, and integrating [...] Read more.
In recent years, there has been a massive increase in the amount of Internet of Things (IoT) devices as well as the data generated by such devices. The participating devices in IoT networks can be problematic due to their resource-constrained nature, and integrating security on these devices is often overlooked. This has resulted in attackers having an increased incentive to target IoT devices. As the number of attacks possible on a network increases, it becomes more difficult for traditional intrusion detection systems (IDS) to cope with these attacks efficiently. In this paper, we highlight several machine learning (ML) methods such as k-nearest neighbour (KNN), support vector machine (SVM), decision tree (DT), naive Bayes (NB), random forest (RF), artificial neural network (ANN), and logistic regression (LR) that can be used in IDS. In this work, ML algorithms are compared for both binary and multi-class classification on Bot-IoT dataset. Based on several parameters such as accuracy, precision, recall, F1 score, and log loss, we experimentally compared the aforementioned ML algorithms. In the case of HTTP distributed denial-of-service (DDoS) attack, the accuracy of RF is 99%. Furthermore, other simulation results-based precision, recall, F1 score, and log loss metric reveal that RF outperforms on all types of attacks in binary classification. However, in multi-class classification, KNN outperforms other ML algorithms with an accuracy of 99%, which is 4% higher than RF. Full article
(This article belongs to the Special Issue AI for IoT)
Back to TopTop