Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = LOPEX_ZJU

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 8833 KB  
Article
New 3-D Fluorescence Spectral Indices for Multiple Pigment Inversions of Plant Leaves via 3-D Fluorescence Spectra
by Shoupeng Tian, Yao Zhang, Jiaoru Wang, Rongxu Zhang, Weizhi Wu, Yadong He, Xiaobin Wu, Wei Sun, Dong Li, Yixin Xiao and Fumin Wang
Remote Sens. 2024, 16(11), 1885; https://doi.org/10.3390/rs16111885 - 24 May 2024
Cited by 7 | Viewed by 3248
Abstract
High-sensitivity fluorescence monitoring has been widely used in agriculture and environmental science. However, the active fluorescence detection information of leaf segments mainly focuses on total chlorophyll, and the fluorescence information of chlorophyll a, chlorophyll b, and some other pigments has not been explored. [...] Read more.
High-sensitivity fluorescence monitoring has been widely used in agriculture and environmental science. However, the active fluorescence detection information of leaf segments mainly focuses on total chlorophyll, and the fluorescence information of chlorophyll a, chlorophyll b, and some other pigments has not been explored. This only considers the fluorescence spectrum characteristics at a single wavelength or the fluorescence integral from a range of wavelength regions and does not completely consider the linkage relation between the excitation, emission, and interference information. In this paper, the three-dimensional fluorescence spectrum, containing the excitation and emission fluorescence spectra, and the corresponding multiple pigment characteristics from the upgraded LOPEX_ZJU database were collected. The linkages of excitation and emission of the three-dimensional fluorescence spectra of these pigments were analyzed for the newly built multiple pigment 3-D fluorescence spectral indices (3-D FSIs), including those of chlorophyll a, chlorophyll b, carotenoid, anthocyanin, and flavonoid 3-D FSIs. Then, these pigment inversion models were established and validated. The results show that the 3-D FSIs performances for the photosynthetic pigment content inversion (including chlorophyll a and b, and carotenoids) were much better than those for the photo-protective pigments (including anthocyanins and flavonoids) from the 3-D fluorescence spectra of these plant leaves. Here, the 3-D fluorescence normalization index (FNI ((F430,690 − F430,763)/(F430,690 + F430,763))) for the chlorophyll a inversion model has a high accuracy, the RMSE is 2.96 μg/cm2, and the 3-D fluorescence reciprocal difference index (FRI (F650,704/F650,668) for the chlorophyll b model has an encouraging RMSE (2.01 μg/cm2). The RMSE of the 3-D fluorescence ratio index (FRI (F500,748/F500,717)) for the carotenoid inversion is 3.77 μg/cm2 RMSE. Only FRI (F370,615/F370,438) was selected for the modeling and validating evaluation of the leaf Flas content inversion, but the evaluation metrics were not good, with an RMSE (151.13 μg/cm2). For Ants, although there was a 3-D FSI (FRDI (1/F540,679 − 1/F540,557)), and its evaluation metrics, with an RMSE (2.8 μg/cm2), were at or over 0.05 level, the validating evaluation metric VC (98.3577%) was not encouraging. These results showed that fluorescence, as a nondestructive and efficient detection method, could determine the contents of chlorophyll a, chlorophyll b, and carotenoid in plant leaves, providing a new method to detect plant information. It can also provide a potential chance for the fluorescence images of fine photo-protective pigments, especially chlorophyll a and b, using the special active fluorescence excitation light source and a few fluorescence imaging channels from the optimal FSIs. Full article
(This article belongs to the Special Issue Remote Sensing for Crop Nutrients and Related Traits)
Show Figures

Figure 1

16 pages, 2567 KB  
Article
PROSPECT-PMP+: Simultaneous Retrievals of Chlorophyll a and b, Carotenoids and Anthocyanins in the Leaf Optical Properties Model
by Yao Zhang, Xinkai Li, Chengjie Wang, Rongxu Zhang, Lisong Jin, Zongtai He, Shoupeng Tian, Kaihua Wu and Fumin Wang
Sensors 2022, 22(8), 3025; https://doi.org/10.3390/s22083025 - 14 Apr 2022
Cited by 10 | Viewed by 3250
Abstract
The PROSPECT leaf optical radiative transfer models, including PROSPECT-MP, have addressed the contributions of multiple photosynthetic pigments (chlorophyll a and b, and carotenoids) to leaf optical properties, but photo-protective pigment (anthocyanins), another important indicator of vegetation physiological and ecological functions, has not been [...] Read more.
The PROSPECT leaf optical radiative transfer models, including PROSPECT-MP, have addressed the contributions of multiple photosynthetic pigments (chlorophyll a and b, and carotenoids) to leaf optical properties, but photo-protective pigment (anthocyanins), another important indicator of vegetation physiological and ecological functions, has not been simultaneously combined within a leaf optical model. Here, we present a new calibration and validation of PROSPECT-MP+ that separates the contributions of multiple photosynthetic and photo-protective pigments to leaf spectrum in the 400–800 nm range using a new empirical dataset that contains multiple photosynthetic and photo-protective pigments (LOPEX_ZJU dataset). We first provide multiple distinct in vivo individual photosynthetic and photo-protective pigment absorption coefficients and leaf average refractive index of the leaf interior using the LOPEX_ZJU dataset. Then, we evaluate the capabilities of PROSPECT-MP+ for forward modelling of leaf directional hemispherical reflectance and transmittance spectra and for retrieval of pigment concentrations by model inversion. The main result of this study is that the absorption coefficients of chlorophyll a and b, carotenoids, and anthocyanins display the physical principles of absorption spectra. Moreover, the validation result of this study demonstrates the potential of PROSPECT-MP+ for improving capabilities in remote sensing of leaf photosynthetic pigments (chlorophyll a and b, and carotenoids) and photo-protective pigment (anthocyanins). Full article
(This article belongs to the Special Issue Advances in Remote Sensors for Earth Observation)
Show Figures

Figure 1

Back to TopTop