Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = LCOE Malaysia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3750 KiB  
Article
Optimal Hybrid Renewable Energy System to Accelerate a Sustainable Energy Transition in Johor, Malaysia
by Pei Juan Yew, Deepak Chaulagain, Noel Ngando Same, Jaebum Park, Jeong-Ok Lim and Jeung-Soo Huh
Sustainability 2024, 16(17), 7856; https://doi.org/10.3390/su16177856 - 9 Sep 2024
Cited by 2 | Viewed by 3288
Abstract
As the world’s second-largest palm oil producer, Malaysia heavily depends on its extensive oil palm cultivation, which accounts for nearly 90% of the country’s lignocellulosic biomass waste. Approximately 20–22 tonnes of empty fruit bunches (EFBs) can be derived from an initial yield of [...] Read more.
As the world’s second-largest palm oil producer, Malaysia heavily depends on its extensive oil palm cultivation, which accounts for nearly 90% of the country’s lignocellulosic biomass waste. Approximately 20–22 tonnes of empty fruit bunches (EFBs) can be derived from an initial yield of 100 tonnes of fresh fruit bunches (FFBs) from oil palm trees. The average annual amount of EFBs produced in Johor is 3233 tonnes per day. Recognising that urban areas contribute significantly to anthropogenic greenhouse gas emissions, and to support Malaysia’s transition from fossil fuel-based energy to a low-carbon energy system, this research employed HOMER Pro software 3.18.3 to develop an optimal hybrid renewable energy system integrating solar and biomass (EFB) energy sources in Johor, Malaysia. The most cost-effective system (solar–biomass) consists of 4075 kW solar photovoltaics, a 2100 kW biomass gasifier, 9363 battery units and 1939 kW converters. This configuration results in a total net present cost (NPC) of USD 44,596,990 and a levelised cost of energy (LCOE) of USD 0.2364/kWh. This system satisfies the residential load demand via 6,020,427 kWh (64.7%) of solar-based and 3,286,257 kWh (35.3%) of biomass-based electricity production, with an annual surplus of 2,613,329 kWh (28.1%). The minimal percentages of unmet electric load and capacity shortage, both <0.1%, indicate that all systems can meet the power demand. In conclusion, this research provides valuable insights into the economic viability and technical feasibility of powering the Kulai district with a solar–biomass system. Full article
Show Figures

Figure 1

14 pages, 1424 KiB  
Article
Life Cycle Cost Assessment of Offshore Wind Farm: Kudat Malaysia Case
by Shamsan Alsubal, Wesam Salah Alaloul, Eu Lim Shawn, M. S. Liew, Pavitirakumar Palaniappan and Muhammad Ali Musarat
Sustainability 2021, 13(14), 7943; https://doi.org/10.3390/su13147943 - 16 Jul 2021
Cited by 19 | Viewed by 9974
Abstract
The Government of Malaysia has set a striving target to achieve a higher usage of renewable energy (RE) in the energy mix which is currently around 2% of the country’s electricity. Yet, the government intends to increase this ratio up to 20% by [...] Read more.
The Government of Malaysia has set a striving target to achieve a higher usage of renewable energy (RE) in the energy mix which is currently around 2% of the country’s electricity. Yet, the government intends to increase this ratio up to 20% by the year 2025. Most of the renewable energy in Malaysia comes from hydropower and biomass sources. Meanwhile, numerous studies have been conducted to determine the feasibility of wind energy in Malaysia. Several locations were reported to be economically viable for wind energy development such as Kudat, Mersing, and Kuala Terengganu. This study presents and discusses the whole life cycle cost analysis of an offshore wind farm in Kudat, Malaysia and determines the cost drivers of offshore wind energy developments. It covers the wind data collection and analysis, breakdown of whole life cycle cost structure, and calculation of the levelized cost of energy (LCOE). Results showed that almost 67% of the total cost was incurred by the capital expenditure (CAPEX), and around 26% by operation and maintenance costs (OPEX), while decommissioning costs (DECOM) reached up to 7% of the whole life cycle costs. The LCOE was calculated and determined to be USD 127.58/MWh. Full article
Show Figures

Figure 1

Back to TopTop