Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Korchevsky SLLN

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 316 KiB  
Article
On MV-Algebraic Versions of the Strong Law of Large Numbers
by Piotr Nowak and Olgierd Hryniewicz
Entropy 2019, 21(7), 710; https://doi.org/10.3390/e21070710 - 19 Jul 2019
Cited by 1 | Viewed by 3029
Abstract
Many-valued (MV; the many-valued logics considered by Łukasiewicz)-algebras are algebraic systems that generalize Boolean algebras. The MV-algebraic probability theory involves the notions of the state and observable, which abstract the probability measure and the random variable, both considered in the Kolmogorov probability theory. [...] Read more.
Many-valued (MV; the many-valued logics considered by Łukasiewicz)-algebras are algebraic systems that generalize Boolean algebras. The MV-algebraic probability theory involves the notions of the state and observable, which abstract the probability measure and the random variable, both considered in the Kolmogorov probability theory. Within the MV-algebraic probability theory, many important theorems (such as various versions of the central limit theorem or the individual ergodic theorem) have been recently studied and proven. In particular, the counterpart of the Kolmogorov strong law of large numbers (SLLN) for sequences of independent observables has been considered. In this paper, we prove generalized MV-algebraic versions of the SLLN, i.e., counterparts of the Marcinkiewicz–Zygmund and Brunk–Prokhorov SLLN for independent observables, as well as the Korchevsky SLLN, where the independence of observables is not assumed. To this end, we apply the classical probability theory and some measure-theoretic methods. We also analyze examples of applications of the proven theorems. Our results open new directions of development of the MV-algebraic probability theory. They can also be applied to the problem of entropy estimation. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Back to TopTop