Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Kivu Belt

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4601 KB  
Review
A Review of the G4 “Tin Granites” and Associated Mineral Occurrences in the Kivu Belt (Eastern Democratic Republic of the Congo) and Their Relationships with the Last Kibaran Tectono-Thermal Events
by Michel Villeneuve, Nandefo Wazi, Christian Kalikone and Andreas Gärtner
Minerals 2022, 12(6), 737; https://doi.org/10.3390/min12060737 - 8 Jun 2022
Cited by 12 | Viewed by 4824
Abstract
The Mesoproterozoic Kibaran belts host large amounts of mineral resources such as cassiterite, wolframite, gold, and columbite-group minerals (“coltan”), all of them in high demand for new technologies and related industries. Most of these mineral occurrences are linked to the latest Mesoproterozoic to [...] Read more.
The Mesoproterozoic Kibaran belts host large amounts of mineral resources such as cassiterite, wolframite, gold, and columbite-group minerals (“coltan”), all of them in high demand for new technologies and related industries. Most of these mineral occurrences are linked to the latest Mesoproterozoic to early Neoproterozoic G4 granitoid intrusions, also termed “tin(-bearing) granites”. Three main parts constitute the Kibaran belts: the Kibaride Belt (KIB) in the south, the Karagwe-Ankole Belt (KAB) in the east, and the Kivu Belt (KVB) in the west. Geological detail concerning the metallogeny of the KVB, which hosts large parts of these mineral resources, is very sparse. Previously, there was an assumed time gap of about 200 Ma between the formation of the last Kibaran terranes (1250 to 1200 Ma) and the emplacement of the G4 granites (ca. 1050 to 970 Ma), which generated the main mineralizations. Recent studies dated the last Kibaran tectono-thermal events younger than 1120 to 1110 Ma, which gave evidence for a drastic reduction in this time gap. Thus, the two newly recognized tectono-thermal events have likely contributed to the remobilization of older mineralized granites. These new data allow us to link the G4 granitoids and the associated mineralizations with the terminal Kibaran orogeny. However, the G4 emplacement and its relationships with older granites, with their host rocks and associated mineralizations, are not yet understood. Here, the main occurrences of the KVB are reviewed, and comparisons with similar mineralizations in the adjacent KAB are undertaken to improve our understanding on these complex relationships. Full article
(This article belongs to the Special Issue Granite-Related Li-Sn-W Deposits—New Achievements, Ongoing Issue)
Show Figures

Figure 1

Back to TopTop