Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Kassos

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4193 KiB  
Article
Offshore Wind Farm in the Southeast Aegean Sea and Energy Security
by Georgios Delagrammatikas and Spyridon Roukanas
Energies 2023, 16(13), 5208; https://doi.org/10.3390/en16135208 - 6 Jul 2023
Cited by 3 | Viewed by 4767
Abstract
This paper deals with the creation, in realistic terms, of an offshore wind farm between the Greek islands of Karpathos and Kassos in the Dodecanese complex. In this context, the terms and conditions for the possible existence of an offshore wind park in [...] Read more.
This paper deals with the creation, in realistic terms, of an offshore wind farm between the Greek islands of Karpathos and Kassos in the Dodecanese complex. In this context, the terms and conditions for the possible existence of an offshore wind park in Greece are analyzed; the technical components of such a project are described; the offshore wind farm, which was designed by the authors, is presented in detail; and the location selected for its installation is assessed. Moreover, the benefits for the islands of Karpathos and Kassos and for the Greek State, as well as financial data adapted to this specific offshore wind farm and SWOT analysis for the two phases of the project, are presented. The authors conclude that an investment in this project would be viable in economic terms and feasible, despite it being a small-scale project. Full article
(This article belongs to the Special Issue The EU’s Energy Security and the Green Deal)
Show Figures

Figure 1

16 pages, 2227 KiB  
Article
Demonstrating the Potential of Using Bio-Based Sustainable Polyester Blends for Bone Tissue Engineering Applications
by David H. Ramos-Rodriguez, Samand Pashneh-Tala, Amanpreet Kaur Bains, Robert D. Moorehead, Nikolaos Kassos, Adrian L. Kelly, Thomas E. Paterson, C. Amnael Orozco-Diaz, Andrew A. Gill and Ilida Ortega Asencio
Bioengineering 2022, 9(4), 163; https://doi.org/10.3390/bioengineering9040163 - 6 Apr 2022
Cited by 8 | Viewed by 4537
Abstract
Healthcare applications are known to have a considerable environmental impact and the use of bio-based polymers has emerged as a powerful approach to reduce the carbon footprint in the sector. This research aims to explore the suitability of using a new sustainable polyester [...] Read more.
Healthcare applications are known to have a considerable environmental impact and the use of bio-based polymers has emerged as a powerful approach to reduce the carbon footprint in the sector. This research aims to explore the suitability of using a new sustainable polyester blend (Floreon™) as a scaffold directed to aid in musculoskeletal applications. Musculoskeletal problems arise from a wide range of diseases and injuries related to bones and joints. Specifically, bone injuries may result from trauma, cancer, or long-term infections and they are currently considered a major global problem in both developed and developing countries. In this work we have manufactured a series of 3D-printed constructs from a novel biopolymer blend using fused deposition modelling (FDM), and we have modified these materials using a bioceramic (wollastonite, 15% w/w). We have evaluated their performance in vitro using human dermal fibroblasts and rat mesenchymal stromal cells. The new sustainable blend is biocompatible, showing no differences in cell metabolic activity when compared to PLA controls for periods 1–18 days. FloreonTM blend has proven to be a promising material to be used in bone tissue regeneration as it shows an impact strength in the same range of that shown by native bone (just under 10 kJ/m2) and supports an improvement in osteogenic activity when modified with wollastonite. Full article
(This article belongs to the Special Issue Current Developments and Applications in Bone Tissue Engineering)
Show Figures

Figure 1

Back to TopTop