Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = JmSOC1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4126 KB  
Article
Gene and Its Promoter Cloning, and Functional Validation of JmSOC1 Revealed Its Role in Promoting Early Flowering and the Interaction with the JmSVP Protein
by Tianyi Dong, Mengmeng Zhang, Jingwen Wu, Jingze Li, Chunping Liu and Lijie Zhang
Int. J. Mol. Sci. 2024, 25(23), 12932; https://doi.org/10.3390/ijms252312932 - 1 Dec 2024
Cited by 3 | Viewed by 1695
Abstract
Juglans mandshurica, a notable woody oil tree species, possesses both fruit and timber value. However, the complete heterodichogamous flowering mechanism in this species remains elusive. SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) is a crucial regulator of flower bud development in Arabidopsis thaliana [...] Read more.
Juglans mandshurica, a notable woody oil tree species, possesses both fruit and timber value. However, the complete heterodichogamous flowering mechanism in this species remains elusive. SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) is a crucial regulator of flower bud development in Arabidopsis thaliana. In this study, we cloned the coding DNA sequence (CDS) of the JmSOC1 gene, revealing a 705 base pair (bp) sequence that encodes a protein of 234 amino acids. The JmSOC1 protein contains a highly conserved MADS-box domain, indicating its role as a transcription factor, and is predominantly localized in the nucleus. The JmSOC1 gene expressed the highest in flower buds. The peak expression level of JmSOC1 during the physiological differentiation phase occurred earlier in male flower buds of protandry (MPD) on April 10th compared to female flower buds of protandry (FPD) on April 14th; similarly, the peak expression in female flower buds of protogyny (FPG) on April 2nd preceded that in male flower buds of protogyny (MPG) on April 14th. This may be the primary reason for the earlier differentiation of the male flowers in protandry individuals and the female flowers in protogyny individuals. Overexpression of JmSOC1 in wild-type A. thaliana resulted in earlier flowering, accompanied by an upregulation of key flowering-related genes such as LEAFY (LFY), APETALA1 (AP1), and FLOWERING LOCUS T (FT). To further explore the function of JmSOC1, a 782 bp promoter sequence of JmSOC1 gene was cloned, which has been verified to have promoter activity by GUS staining. Furthermore, the interaction between the JmSOC1 gene promoter and its upstream regulatory protein JmSVP was verified using a yeast one-hybrid. These results offer valuable insights into the molecular mechanisms underpinning the promotion of early flowering in J. mandshurica and hold promise for laying a theoretical foundation for the flowering regulation network of this species. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

26 pages, 5999 KB  
Article
Soil Organic Carbon Chemical Functional Groups under Different Revegetation Types Are Coupled with Changes in the Microbial Community Composition and the Functional Genes
by Jiaojiao Deng, Wenxu Zhu, Yongbin Zhou and You Yin
Forests 2019, 10(3), 240; https://doi.org/10.3390/f10030240 - 8 Mar 2019
Cited by 39 | Viewed by 7018
Abstract
Different revegetatiom types can affect the chemical composition of soil organic carbon (SOC), soil microbial community and the functional genes related to carbon cycle. However, the relationships between SOC chemical functional groups and soil microbial communities and the functional genes remains poorly unclear [...] Read more.
Different revegetatiom types can affect the chemical composition of soil organic carbon (SOC), soil microbial community and the functional genes related to carbon cycle. However, the relationships between SOC chemical functional groups and soil microbial communities and the functional genes remains poorly unclear under different revegetation types. Using the solid-state 13C nuclear magnetic resonance (NMR) spectroscopy, we examined changes in the SOC chemical composition of five soils (0–10 cm depth) from Larix gmelinii Rupr. (LG), Pinus koraiensis Sieb. (PK), Quercus mongolica Fisch. (QM), Juglans mandshurica Maxim. (JM), and conifer-broadleaf forest (CB). And the soil microbial community genes related to metabolism of macro-molecular compounds were determined via whole genome shotgun based on Illumina HiSeq. Our results indicated that broadleaf forests (JM, QM) had increased the contents of soil total carbon (C), total nitrogen (N), dissolved organic carbon (DOC), and microbial biomass carbon (MBC), compared with coniferous forests (LG, PK) and the conifer-broadleaf forest (CB). While, the coniferous forests generated a lower O-alcoxyl C, a higher alkyl C, and the ratio of alkyl C/O-alkyl C than broadleaf forests. A total of four kingdoms were identified via whole metagenome shotgun sequencing, including eight archaea, 55 bacteria, 15 eukaryota, and two viruses, giving a total 80 phyla. The contents of alkyne C, phenolic C, methoxyl C, COO/NC=O, and alkyl C were strong related to the composition of soil microbial community and their contents illuminated a major part of the variation in soil microbial composition. We detected seven corresponding macro-molecular compounds of different organic carbon functional group, and 244 genes related to metabolism across all samples, and soil total C, total N, and DOC could be the main factors for microbial functional gene composition. Interestingly, the relative abundances of different SOC chemical functional groups, the phylogenetic distance for microbes, the genes of C cycling based on the KEGG database, and the relative abundance of genes related to metabolism of macro-molecular compounds of different SOC chemical functional groups under different revegetation types all could be divided into three groups, including PK plus LG, JM plus QM, and CB. Our results also illustrated that variations in SOC chemical functional groups were strongly associated with changes of soil microbial community taxa and functional genes, which might be affected by the changes of soil characteristics. Full article
Show Figures

Figure 1

Back to TopTop