Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Jiaoyan–Shimen parallel reservoirs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4555 KiB  
Article
Multi-Objective Optimal Operation Decision for Parallel Reservoirs Based on NSGA-II-TOPSIS-GCA Algorithm: A Case Study in the Upper Reach of Hanjiang River
by Na Wei, Yuxin Peng, Kunming Lu, Guixing Zhou, Xingtao Guo and Minghui Niu
Appl. Sci. 2024, 14(8), 3138; https://doi.org/10.3390/app14083138 - 9 Apr 2024
Cited by 2 | Viewed by 1058
Abstract
The parallel reservoirs in the upper reach of the Hanjiang River are key projects for watershed management, development, and protection. The optimal operation of parallel reservoirs is a multiple-stage, multiple-objective, and multiple-decision attributes complex decision problem. Taking Jiaoyan–Shimen parallel reservoirs as an example, [...] Read more.
The parallel reservoirs in the upper reach of the Hanjiang River are key projects for watershed management, development, and protection. The optimal operation of parallel reservoirs is a multiple-stage, multiple-objective, and multiple-decision attributes complex decision problem. Taking Jiaoyan–Shimen parallel reservoirs as an example, a method of multi-objective optimal operation decision of parallel reservoirs (MOODPR) was proposed. The multi-objective optimal operation model (MOOM) was constructed. The new algorithm coupling NSGA-II, TOPSIS, and GCA was used to solve the MOODPR problem. The method of MOODPR was formed by coupling problem identification, model construction, an optimization solution, and scheme evaluation. The results show that (1) combining the Euclidean distance with the grey correlation degree to construct a new hybrid closeness degree makes the multi-attribute decision making method more scientific and feasible. (2) The NSGA-II-TOPSIS-GCA algorithm is applied to obtain decision schemes, which provide decision support for management. (3) It can be seen from the Pareto chart that for the Jiaoyan–Shimen parallel reservoirs, the comprehensive water supply was negatively related to ecology. (4) The comprehensive water supply and ecological AAPFD value in the extraordinarily dry year was 4.212 × 108 m3 and 4.953. The number of maximum continuous water shortage periods was 4 and 6. The maximum ten-day water shortage was 4.46 × 107 m3 and 2.3 × 106 m3. The research results provide technical support and reference value to multi-objective optimal operation decisions for parallel reservoirs in the upper reach of the Hanjiang River. Full article
Show Figures

Figure 1

Back to TopTop