Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Indonesia′s FOLU Net Sink 2030

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 1393 KiB  
Article
The Tropical Peatlands in Indonesia and Global Environmental Change: A Multi-Dimensional System-Based Analysis and Policy Implications
by Yee Keong Choy and Ayumi Onuma
Reg. Sci. Environ. Econ. 2025, 2(3), 17; https://doi.org/10.3390/rsee2030017 - 1 Jul 2025
Viewed by 640
Abstract
Tropical peatlands store approximately 105 gigatons of carbon (GtC), serving as vital long-term carbon sinks, yet remain critically underrepresented in climate policy. Indonesia peatlands contain 57GtC—the largest tropical peatland carbon stock in the Asia–Pacific. However, decades of drainage, fires, and lax enforcement practices [...] Read more.
Tropical peatlands store approximately 105 gigatons of carbon (GtC), serving as vital long-term carbon sinks, yet remain critically underrepresented in climate policy. Indonesia peatlands contain 57GtC—the largest tropical peatland carbon stock in the Asia–Pacific. However, decades of drainage, fires, and lax enforcement practices have degraded vast peatland areas, turning them from carbon sinks into emission sources—as evidenced by the 1997 and 2015 peatland fires which emitted 2.57 Gt CO2eq and 1.75 Gt CO2eq, respectively. Using system theory validated against historical data (1997–2023), we develop a causal loop model revealing three interconnected feedback loops driving irreversible collapse: (1) drainage–desiccation–oxidation, where water table below −40 cm triggers peat oxidation (2–5 cm subsistence) and fires; (2) fire–climate–permafrost, wherein emissions intensify radiative forcing, destabilizing monsoons and accelerating Arctic permafrost thaw (+15% since 2000); and (2) economy–governance failure, perpetuated by palm oil’s economic dominance and slack regulatory oversight. To break these vicious cycles, we propose a precautionary framework featuring IoT-enforced water table (≤40 cm), reducing emissions by 34%, legally protected “Global Climate Stabilization Zones” for peat domes (>3 m depth), safeguarding 57 GtC, and ASEAN transboundary enforcement funded by a 1–3% palm oil levy. Without intervention, annual emissions may reach 2.869 GtCO2e by 2030 (Nationally Determined Contribution’s business-as-usual scenario). Conversely, rewetting 590 km2/year aligns with Indonesia’s FOLU Net Sink 2030 target (−140 Mt CO2e) and mitigates 1.4–1.6 MtCO2 annually. We conclude that integrating peatlands as irreplaceable climate infrastructure into global policy is essential for achieving Paris Agreement goals and SDGs 13–15. Full article
Show Figures

Figure 1

41 pages, 2103 KiB  
Review
Improvement of Integrated Watershed Management in Indonesia for Mitigation and Adaptation to Climate Change: A Review
by Tyas Mutiara Basuki, Hunggul Yudono Setio Hadi Nugroho, Yonky Indrajaya, Irfan Budi Pramono, Nunung Puji Nugroho, Agung Budi Supangat, Dewi Retna Indrawati, Endang Savitri, Nining Wahyuningrum, Purwanto, Sigit Andy Cahyono, Pamungkas Buana Putra, Rahardyan Nugroho Adi, Agung Wahyu Nugroho, Diah Auliyani, Agus Wuryanta, Heru Dwi Riyanto, Beny Harjadi, Casimerus Yudilastyantoro, Luthfi Hanindityasari, Firda Maftukhakh Hilmya Nada and Daniel Pandapotan Simarmataadd Show full author list remove Hide full author list
Sustainability 2022, 14(16), 9997; https://doi.org/10.3390/su14169997 - 12 Aug 2022
Cited by 45 | Viewed by 14463
Abstract
Climate change is a major challenge for Indonesia due to its impact on food, water, energy sustainability, and environmental health. Almost all Indonesian regions are exposed to floods, landslides, soil erosion, drought, and heavy rains. In response to these challenges, the Government of [...] Read more.
Climate change is a major challenge for Indonesia due to its impact on food, water, energy sustainability, and environmental health. Almost all Indonesian regions are exposed to floods, landslides, soil erosion, drought, and heavy rains. In response to these challenges, the Government of Indonesia has determined integrated watershed management (IWM) to be one of the key programs to reduce greenhouse gas (GHG) emissions, as stated in the updated Indonesian nationally determined contribution (NDC). This paper intends to review Indonesia′s efforts in mitigating and adapting to climate change through an IWM approach, and its attempts to realize a decent life and environment for all communities. Improvement of the IWM can be conducted by strengthening the synergy between the responsible institutions for watershed management and the responsible institutions for handling mitigation and adaptation of climate change impacts. In addition, it is important to prioritize coordination, participation, and collaboration not only at the national government level but also at the international level, since numerous problems may exist in the transboundary between countries, and finding solutions should involve planning, implementation, monitoring, and evaluation. Implementing the micro watershed model (MWM), supported by culture, local wisdom, and traditional knowledge in communities, can be used to improve the current IWM. Full article
(This article belongs to the Special Issue Integrated Watershed Management for Adaptation to Climate Change)
Show Figures

Figure 1

Back to TopTop