Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Immunoglobulin A-coated bacteria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7237 KiB  
Article
Lactobacillus fermentum Stimulates Intestinal Secretion of Immunoglobulin A in an Individual-Specific Manner
by Liya Mei, Ying Chen, Jialiang Wang, Jian Lu, Jianxin Zhao, Hao Zhang, Gang Wang and Wei Chen
Foods 2022, 11(9), 1229; https://doi.org/10.3390/foods11091229 - 25 Apr 2022
Cited by 14 | Viewed by 3271
Abstract
Immunoglobulin A (IgA), as the most secreted immunoglobulin in the intestine, plays an irreplaceable role in mucosal immunity regulation. Previous studies have indicated that Lactobacillus showed strain specificity in stimulating the secretion of IgA through intestinal mucosal lymphocytes. The reason for this phenomenon [...] Read more.
Immunoglobulin A (IgA), as the most secreted immunoglobulin in the intestine, plays an irreplaceable role in mucosal immunity regulation. Previous studies have indicated that Lactobacillus showed strain specificity in stimulating the secretion of IgA through intestinal mucosal lymphocytes. The reason for this phenomenon is not clear. The current studies have been aimed at exploring the effect of a strain on the secretion of IgA in the host’s intestine, but the mechanism behind it has not been seriously studied. Based on this, we selected five strains of Lactobacillus fermentum isolated from different individuals to determine whether there are intraspecific differences in stimulating the secretion of IgA from the intestinal mucosa. It was found that IgA concentrations in different intestinal segments and faeces induced by L. fermentum were different. 12-1 and X6L1 strains increased the secretion of IgA by the intestine significantly. In addition, different strains of L. fermentum were also proven to have different effects on the host gut microbiota but no significant effects on IgA-coated microbiota. Besides, it was speculated that different strains of L. fermentum may act on different pathways to stimulate IgA in a non-inflammatory manner. By explaining the differences of IgA secretion in the host’s intestine tract stimulated by different strains of L. fermentum, it is expected to provide a theoretical basis for the stimulation of intestinal secretion of IgA by Lactobacillus and a new direction for exploring the relationship between Lactobacillus and human immunity. Full article
Show Figures

Figure 1

13 pages, 2394 KiB  
Article
Sodium Butyrate Reduces Colitogenic Immunoglobulin A-Coated Bacteria and Modifies the Composition of Microbiota in IL-10 Deficient Mice
by Tenghui Zhang, Chao Ding, Mingli Zhao, Xujie Dai, Jianbo Yang, Yi Li, Lili Gu, Yao Wei, Jianfeng Gong, Weiming Zhu, Ning Li and Jieshou Li
Nutrients 2016, 8(12), 728; https://doi.org/10.3390/nu8120728 - 24 Nov 2016
Cited by 34 | Viewed by 7064
Abstract
High levels of immunoglobulin A (IgA)-coated bacteria may have a role in driving inflammatory bowel disease (IBD). We therefore investigated the effect of sodium butyrate on microbiota in IBD prone interleukin (IL)-10−/− mice. At 8 weeks of age, mice were allocated into [...] Read more.
High levels of immunoglobulin A (IgA)-coated bacteria may have a role in driving inflammatory bowel disease (IBD). We therefore investigated the effect of sodium butyrate on microbiota in IBD prone interleukin (IL)-10−/− mice. At 8 weeks of age, mice were allocated into three groups (n = 4/group): normal (C57BL/6), IL-10−/−, and IL-10−/− treated with sodium butyrate (100 mM). Severity of colitis, inflammatory cytokine and short-chain fatty acid (SCFA) concentration in proximal colon contents, the percentage of IgA-coated bacteria and microbiota composition by 16S ribosomal RNA assessment of stool were measured after 4 weeks of treatment. Sodium butyrate ameliorated histological colitis and decreased levels of tumor necrosis factor (TNF)-α and IL-6 in IL-10−/− mice compared with those without treatment. At the phylum level, a reduction in Bacteroidetes and an increase in Firmicutes in IL-10−/− mice treated with sodium butyrate were observed. Additionally, Prevotellaceae species were reduced in IL-10−/− mice treated with sodium butyrate as compared with those without treatment. The level of biodiversity was slightly increased and the amount of IgA-coated bacteria decreased in IL-10−/− mice treated with sodium butyrate compared with those without treatment. Our results indicate that sodium butyrate protects against colitis, possibly through modifying the gut microbiota, enriching biodiversity and reducing the amount of colitogenic IgA-coated bacteria in IL-10−/− mice. Full article
(This article belongs to the Special Issue Nutrition and Diet in IBD)
Show Figures

Figure 1

Back to TopTop