Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Ilyonectria genomes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2311 KiB  
Article
Cell-Free Extracts of the Ginseng Soil Bacterium Pseudomonas plecoglossicida Promote Suppression of Resistance of American Ginseng (Panax quinquefolius) to Root Rot Caused by Ilyonectria mors-panacis
by Paul H. Goodwin and Tom Hsiang
Biology 2024, 13(9), 671; https://doi.org/10.3390/biology13090671 - 29 Aug 2024
Cited by 3 | Viewed by 1232
Abstract
A prior report showed that soil previously planted with American ginseng (Panax quinquefolius) contained compound(s) which could reduce ginseng resistance to root infection by Ilyonectria mors-panacis, and this was not found in extracts from ginseng roots or soils not previously [...] Read more.
A prior report showed that soil previously planted with American ginseng (Panax quinquefolius) contained compound(s) which could reduce ginseng resistance to root infection by Ilyonectria mors-panacis, and this was not found in extracts from ginseng roots or soils not previously planted with ginseng. However, the origin of this ginseng-related factor in ginseng soils is unknown. An isolate of Pseudomonas plecoglossicida obtained from soil where P. quinquefolius had been harvested grew more in culture media when ginseng root extract was included, indicating the use of compounds in the extract as nutrients. Treatment with cell-free extracts from media containing ginseng root extracts where P. plecoglossicida had been cultured resulted in root lesions caused by I. mors-panacis being significantly larger than roots treated with fresh media containing root extract or with cell-free media inoculated with the same bacterial isolate without root extract. Levels of ginsenosides in the media decreased over time with incubation. Genome sequencing revealed that the bacterium had genes homologous to those reported for ginsenoside metabolism, which can release sugars for microbial growth. Thus, a ginseng soil bacterium, P. plecoglossicida, can create compound(s) suppressive to root rot resistance, similar to that found in soils previously planted with ginseng, indicating that the activity suppressing root rot resistance in soil previously planted with ginseng may be of microbial origin, utilizing compounds from ginseng roots. Full article
(This article belongs to the Special Issue Advances in Research on Diseases of Plants)
Show Figures

Figure 1

19 pages, 1502 KiB  
Article
Differences in Saprophytic Growth, Virulence, Genomes, and Secretomes of Ilyonectria robusta and I. mors-panacis Isolates from Roots of American Ginseng (Panax quinquefolius)
by Behrang Behdarvandi, Tom Hsiang, Moez Valliani and Paul H. Goodwin
Horticulturae 2023, 9(6), 713; https://doi.org/10.3390/horticulturae9060713 - 17 Jun 2023
Cited by 4 | Viewed by 1830
Abstract
A comparison of the virulence, saprophytic growth, and genomes of 12 isolates of Ilyonectria mors-panacis and 4 isolates of I. robusta from Canada pathogenic to Panax quinquefolius was made. There were no significant differences in the average lesion size on detached roots between [...] Read more.
A comparison of the virulence, saprophytic growth, and genomes of 12 isolates of Ilyonectria mors-panacis and 4 isolates of I. robusta from Canada pathogenic to Panax quinquefolius was made. There were no significant differences in the average lesion size on detached roots between isolates of the two Ilyonectria species or isolates that originated from infected roots in first- or second-crop ginseng soils. This did not support the hypotheses that I. mors-panacis is always more virulent than I. robusta or that there is selection for higher virulence during the first crop. However, the average growth rate on potato dextrose agar for I. robusta was significantly greater than that of I. mors-panacis, and the average total genome size of I. robusta isolates was significantly smaller with a significantly higher GC content. On dendrograms based on nucleotide sequences of all predicted exons of the genomes, I. robusta isolates were distinguishable from I. mors-panacis isolates, which were similar but could be separated into types 1 and 2. The difference between type 1 and type 2 I. mors-panacis was not related to geographical origin, virulence, growth rate, or mating type. However, the division was also observed for the total predicted secretome, most notably small secreted cysteine-rich proteins and secreted proteases, indicating that type 1 and 2 isolates of I. mors-panacis may interact differently with their environment. Full article
Show Figures

Figure 1

9 pages, 1404 KiB  
Article
Purification and Characterization of a Novel Antifungal Flagellin Protein from Endophyte Bacillus methylotrophicus NJ13 against Ilyonectria robusta
by Yun Jiang, Chao Ran, Lin Chen, Wang Yin, Yang Liu, Changqing Chen and Jie Gao
Microorganisms 2019, 7(12), 605; https://doi.org/10.3390/microorganisms7120605 - 22 Nov 2019
Cited by 16 | Viewed by 3386
Abstract
Endophyte Bacillus methylotrophicus NJ13 was isolated from Panax ginseng. Its sterile fermentation liquid showed a significant inhibitory effect against Ilyonectria robusta, causing the rusty root rot of P. ginseng and P. quinquefolius. The antifungal protein was obtained after precipitation by [...] Read more.
Endophyte Bacillus methylotrophicus NJ13 was isolated from Panax ginseng. Its sterile fermentation liquid showed a significant inhibitory effect against Ilyonectria robusta, causing the rusty root rot of P. ginseng and P. quinquefolius. The antifungal protein was obtained after precipitation by 20% saturated ammonium sulfate, desalted by Sephadex G-25, weak anion exchange chromatography, and gel filtration chromatography. SDS-PAGE showed that the purified protein was approximately 29 KDa. The antifungal protein after desalting was not resistant to temperatures higher than 100 °C, resistant to acid conditions, and did not tolerate organic solvents and protease K. The amino acid sequence of purified antifungal protein had an identity of 76% to flagellin from Bacillus velezensis. The isoelectric point of the protein was 4.97 and its molecular mass was 27 KDa. Therefore, a specific primer G1 was designed based on the flagellin gene sequence, and a 770 bp gene sequence was cloned in NJ13 genomic DNA, which shared the same size of flagellin. There were ten base differences between the gene sequences of flagellin and the cloned gene, however, the amino acid sequence encoded by the cloned gene was identical to the flagellin. In conclusion, the antifungal protein produced by biocontrol agent NJ13 contained a flagellin protein. Full article
(This article belongs to the Special Issue Probiotic Microorganism in Plants, Rhizosphere and Soil)
Show Figures

Figure 1

Back to TopTop