Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Humboldt giant squid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3775 KiB  
Article
Utilization of Marine Waste to Obtain β-Chitin Nanofibers and Films from Giant Humboldt Squid Dosidicus gigas
by Gustavo Cabrera-Barjas, Cristian González, Aleksandra Nesic, Kelly P. Marrugo, Oscar Gómez, Cédric Delattre, Oscar Valdes, Heng Yin, Gaston Bravo and Juan Cea
Mar. Drugs 2021, 19(4), 184; https://doi.org/10.3390/md19040184 - 26 Mar 2021
Cited by 23 | Viewed by 4636
Abstract
β-chitin was isolated from marine waste, giant Humboldt squid Dosidicus gigas, and further converted to nanofibers by use of a collider machine under acidic conditions (pH 3). The FTIR, TGA, and NMR analysis confirmed the efficient extraction of β-chitin. The SEM, TEM, [...] Read more.
β-chitin was isolated from marine waste, giant Humboldt squid Dosidicus gigas, and further converted to nanofibers by use of a collider machine under acidic conditions (pH 3). The FTIR, TGA, and NMR analysis confirmed the efficient extraction of β-chitin. The SEM, TEM, and XRD characterization results verified that β-chitin crystalline structure were maintained after mechanical treatment. The mean particle size of β-chitin nanofibers was in the range between 10 and 15 nm, according to the TEM analysis. In addition, the β-chitin nanofibers were converted into films by the simple solvent-casting and drying process at 60 °C. The obtained films had high lightness, which was evidenced by the CIELAB color test. Moreover, the films showed the medium swelling degree (250–290%) in aqueous solutions of different pH and good mechanical resistance in the range between 4 and 17 MPa, depending on film thickness. The results obtained in this work show that marine waste can be efficiently converted to biomaterial by use of mild extractive conditions and simple mechanical treatment, offering great potential for the future development of sustainable multifunctional materials for various industrial applications such as food packaging, agriculture, and/or wound dressing. Full article
Show Figures

Graphical abstract

Back to TopTop