Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Hf-based full-Heusler compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 9515 KiB  
Article
L21 and XA Ordering Competition in Hafnium-Based Full-Heusler Alloys Hf2VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb)
by Xiaotian Wang, Zhenxiang Cheng and Wenhong Wang
Materials 2017, 10(10), 1200; https://doi.org/10.3390/ma10101200 - 20 Oct 2017
Cited by 27 | Viewed by 5599
Abstract
For theoretical designing of full-Heusler based spintroinc materials, people have long believed in the so-called Site Preference Rule (SPR). Very recently, according to the SPR, there are several studies on XA-type Hafnium-based Heusler alloys X2YZ, i.e., Hf2VAl, Hf2 [...] Read more.
For theoretical designing of full-Heusler based spintroinc materials, people have long believed in the so-called Site Preference Rule (SPR). Very recently, according to the SPR, there are several studies on XA-type Hafnium-based Heusler alloys X2YZ, i.e., Hf2VAl, Hf2CoZ (Z = Ga, In) and Hf2CrZ (Z = Al, Ga, In). In this work, a series of Hf2-based Heusler alloys, Hf2VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb), were selected as targets to study the site preferences of their atoms by first-principle calculations. It has been found that all of them are likely to exhibit the L21-type structure instead of the XA one. Furthermore, we reveal that the high values of spin-polarization of XA-type Hf2VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb) alloys have dropped dramatically when they form the L21-type structure. Also, we prove that the electronic, magnetic, and physics nature of these alloys are quite different, depending on the L21-type or XA-type structures. Full article
Show Figures

Figure 1

Back to TopTop