Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Hapalochlaena fasciata

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1622 KiB  
Article
Tetrodotoxin and the Geographic Distribution of the Blue-Lined Octopus Hapalochlaena fasciata on the Korean Coast
by Ji-Hoe Kim, Dong-Wook Kim, Sung-Rae Cho, Ka-Jeong Lee and Jong-Soo Mok
Toxins 2023, 15(4), 279; https://doi.org/10.3390/toxins15040279 - 11 Apr 2023
Cited by 8 | Viewed by 3751
Abstract
The genus Hapalochlaena, including the blue-lined octopus Hapalochlaena fasciata (H. fasciata), is highly toxic. Venomous, blue-lined octopuses were recently found in Korea, but their toxicity, toxin composition, and distribution remain largely unknown. Here we estimated the geographic distribution of the organisms along the [...] Read more.
The genus Hapalochlaena, including the blue-lined octopus Hapalochlaena fasciata (H. fasciata), is highly toxic. Venomous, blue-lined octopuses were recently found in Korea, but their toxicity, toxin composition, and distribution remain largely unknown. Here we estimated the geographic distribution of the organisms along the Korean coast and clarified their toxicity. Tetrodotoxin (TTX) was present in all three specimens of H. fasciata examined, although the toxicity varied largely between individuals. The mean TTX concentration in the whole body of the three specimens was 6.5 ± 2.2 μg/g (range 3.3–8.5 μg/g). Among the body parts examined, the salivary glands exhibited the highest concentration (22.4 ± 9.7 μg/g). From 2012 to 2021, 26 individuals were obtained nearly every month from different regions of the Korean coast. A non-fatal case of a blue-lined octopus bite was reported along the Korean coast in June 2015. This is the first report on the widespread distribution of blue-lined octopuses on the Korean coast and TTX detection. The widespread distribution of the TTX-bearing H. fasciata along the Korean coast within the temperate zone indicates that the species may soon become a serious health issue in Korea. The toxicity of this species is also a potentially significant human health risk. Full article
Show Figures

Figure 1

13 pages, 8574 KiB  
Article
Tetrodotoxin Profiles in Xanthid Crab Atergatis floridus and Blue-Lined Octopus Hapalochlaena cf. fasciata from the Same Site in Nagasaki, Japan
by Yuchengmin Zhang, Yuta Yamate, Takeshi Takegaki, Osamu Arakawa and Tomohiro Takatani
Toxins 2023, 15(3), 193; https://doi.org/10.3390/toxins15030193 - 3 Mar 2023
Cited by 6 | Viewed by 2303
Abstract
The xanhid crab Atergatis floridus and the blue-lined octopus Hapalochlaena cf. fasciata have long been known as TTX-bearing organisms. It has been speculated that the TTX possessed by both organisms is exogenously toxic through the food chain, since they are reported to have [...] Read more.
The xanhid crab Atergatis floridus and the blue-lined octopus Hapalochlaena cf. fasciata have long been known as TTX-bearing organisms. It has been speculated that the TTX possessed by both organisms is exogenously toxic through the food chain, since they are reported to have geographic and individual differences. The source and supply chain of TTX for both of these organisms, however, remain unclear. On the other hand, since crabs are one of the preferred prey of octopuses, we focused our attention on the relationship between the two species living in the same site. The aim of this study was to determine TTX concentrations and TTX profiles of A. floridus and H. cf. fasciata, collected simultaneously in the same site, and examine the relationship between them. Although there were individual differences in the TTX concentration in both A. floridus and H. cf. fasciata, the toxin components commonly contained 11-norTTX-6(S)-ol in addition to TTX as the major components, with 4-epiTTX, 11-deoxyTTX, and 4,9-anhydroTTX as the minor components. The results suggest that octopuses and crabs in this site acquire TTX from common prey, including TTX-producing bacteria and/or may have a predator–prey relationship. Full article
Show Figures

Figure 1

Back to TopTop