Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = HLPC characterization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3208 KB  
Article
Vasculo-Protective Effects of Standardized Black Chokeberry Extracts in Mice Aorta
by Valentina Buda, Adrian Sturza, Daliana Minda, Zorița Diaconeasa, Cristian Iuhas, Bianca Bădescu, Cristina-Adriana Dehelean, Corina Danciu, Mirela-Danina Muntean, Rodica Lighezan and Maria-Daniela Dănilă
Int. J. Mol. Sci. 2024, 25(24), 13520; https://doi.org/10.3390/ijms252413520 - 17 Dec 2024
Cited by 3 | Viewed by 1338
Abstract
Black chokeberry (Aronia melanocarpa <Michx.> Elliot) represents a rich source of dietary polyphenols and other bioactive phytochemicals with pleiotropic beneficial cardiovascular effects. The present study was aimed at evaluating the ex vivo effects of two black chokeberry extracts (BChEs), obtained from either [...] Read more.
Black chokeberry (Aronia melanocarpa <Michx.> Elliot) represents a rich source of dietary polyphenols and other bioactive phytochemicals with pleiotropic beneficial cardiovascular effects. The present study was aimed at evaluating the ex vivo effects of two black chokeberry extracts (BChEs), obtained from either dry (DryAr) or frozen (FrozAr) berries, on oxidative stress and vascular function in mice aortic rings after incubation with angiotensin 2 (Ang 2), lipopolysaccharide (LPS) and glucose (GLUC) in order to mimic renin–angiotensin system activation, inflammation and hyperglycemia. The identification of phenolic compounds was performed by means of liquid chromatography with a diode array detector coupled with mass spectrometry using the electrospray ionization interface. The BChE obtained from the FrozAr was rich in cyanidin glucoside, rutin and caffeic acid, while the one obtained from the dried berries was rich in rutin, caffeic acid and chlorogenic acid. Mice aortas were dissected and acutely incubated (12 h) with Ang2 (100 nM), LPS (1 µg/mL) or GLUC (400 mg/dL) in the presence vs. absence of the two BChEs (1, 10, 50, 75, 100, 500 µg/mL). Subsequently, the tissues were used for the assessment of (i) hydrogen peroxide (H2O2) and superoxide production (using two methods, spectrophotometry and immunofluorescence), (ii) H2O2 scavenger effect and (iii) vascular reactivity (using the organ bath/myograph system). After exposure to Ang2, LPS or GLUC, both types of extracts decreased the H2O2 and superoxide levels in a concentration-dependent manner starting from either 50 µg/mL or 100 µg/mL. Also, in the highest concentrations (100 µg/mL, 150 µg/mL and 500 µg/mL), both extracts elicited a significant scavenger effect on H2O2 (similar to catalase, the classic H2O2 scavenger). Moreover, at 100 µg/mL, both extracts were able to significantly improve vascular relaxation in all stimulated aortic rings. In conclusion, in mice aortas, black chokeberry extracts in acute application elicited a concentration-dependent vasculo-protective effect through the reduction of oxidative stress and the alleviation of endothelial dysfunction in ex vivo conditions that mimic cardio-metabolic diseases. Full article
Show Figures

Figure 1

16 pages, 6181 KB  
Article
Influence of Oil Polarity and Cosurfactants on the Foamability of Mono- and Diacylphosphatidylcholine Stabilized Emulsions
by Manuel Bunk and Rolf Daniels
Pharmaceutics 2022, 14(6), 1212; https://doi.org/10.3390/pharmaceutics14061212 - 7 Jun 2022
Cited by 1 | Viewed by 2426
Abstract
Foam formulations are safe and effective therapy options for the treatment of chronic skin conditions that require the application of a topical formulation to delicate skin areas, such as scalp psoriasis or seborrheic dermatitis. This study focused on the development of foamable emulsions [...] Read more.
Foam formulations are safe and effective therapy options for the treatment of chronic skin conditions that require the application of a topical formulation to delicate skin areas, such as scalp psoriasis or seborrheic dermatitis. This study focused on the development of foamable emulsions based on aqueous phospholipid blends. The effects of cosurfactants (nonionic Lauryglucoside (LG); zwitterionic Lauramidopropyl betaine (LAPB)), as well as of oil phases of different polarities, namely paraffin oil (PO), medium-chain triglycerides (MCT) and castor oil (CO), were investigated. The foaming experiments showed that both the type of cosurfactant, as well as the type of oil phase, affects the quality of the resulting foam. Emulsions that were based on a combination of hydrogenated lysophosphatidylcholine (hLPC) and a non-hydrogenated phospholipid, as well as LG as a cosurfactant and MCT as an oil phase, yielded the most satisfactory results. Furthermore, profile analysis tensiometry (PAT), polarization microscopy and laser diffraction analysis were used to characterize the developed formulations. These experiments suggest that the employed phospholipids predominantly stabilize the emulsions, while the cosurfactants are mainly responsible for the formation and stabilization of the foams. However, it appears that both sets of excipients are needed in order to acquire stable emulsions with satisfactory foaming properties. Full article
(This article belongs to the Special Issue Advanced Pharmaceutical Science and Technology in Germany)
Show Figures

Figure 1

15 pages, 1451 KB  
Article
Crepis vesicaria L. subsp. taraxacifolia Leaves: Nutritional Profile, Phenolic Composition and Biological Properties
by Sónia Pedreiro, Sandrine da Ressurreição, Maria Lopes, Maria Teresa Cruz, Teresa Batista, Artur Figueirinha and Fernando Ramos
Int. J. Environ. Res. Public Health 2021, 18(1), 151; https://doi.org/10.3390/ijerph18010151 - 28 Dec 2020
Cited by 14 | Viewed by 4411
Abstract
Crepis vesicaria subsp. taraxacifolia (Cv) of Asteraceae family is used as food and in traditional medicine. However there are no studies on its nutritional value, phenolic composition and biological activities. In the present work, a nutritional analysis of Cv leaves was performed and [...] Read more.
Crepis vesicaria subsp. taraxacifolia (Cv) of Asteraceae family is used as food and in traditional medicine. However there are no studies on its nutritional value, phenolic composition and biological activities. In the present work, a nutritional analysis of Cv leaves was performed and its phenolic content and biological properties evaluated. The nutritional profile was achieved by gas chromatography (GC). A 70% ethanolic extract was prepared and characterized by HLPC-PDA-ESI/MSn. The quantification of chicoric acid was determined by HPLC-PDA. Subsequently, it was evaluated its antioxidant activity by DPPH, ABTS and FRAP methods. The anti-inflammatory activity and cellular viability was assessed in Raw 264.7 macrophages. On wet weight basis, carbohydrates were the most abundant macronutrients (9.99%), followed by minerals (2.74%) (mainly K, Ca and Na), protein (1.04%) and lipids (0.69%), with a low energetic contribution (175.19 KJ/100 g). The Cv extract is constituted essentially by phenolic acids as caffeic, ferulic and quinic acid derivatives being the major phenolic constituent chicoric acid (130.5 mg/g extract). The extract exhibited antioxidant activity in DPPH, ABTS and FRAP assays and inhibited the nitric oxide (NO) production induced by LPS (IC50 = 0.428 ± 0.007 mg/mL) without cytotoxicity at all concentrations tested. Conclusions: Given the nutritional and phenolic profile and antioxidant and anti-inflammatory properties, Cv could be a promising useful source of functional food ingredients. Full article
Show Figures

Figure 1

Back to TopTop