Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = HEC-ResPRM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3551 KB  
Article
Optimal Operation of Nashe Hydropower Reservoir under Land Use Land Cover Change in Blue Nile River Basin
by Megersa Kebede Leta, Tamene Adugna Demissie and Jens Tränckner
Water 2022, 14(10), 1606; https://doi.org/10.3390/w14101606 - 17 May 2022
Cited by 17 | Viewed by 3745
Abstract
Changes in LULC (land use land cover), which significantly influence the spatial and temporal distribution of hydrological processes and water resources in general, have a substantial impact on hydropower generation. The utilization of an optimization approach in order to analyze the operation of [...] Read more.
Changes in LULC (land use land cover), which significantly influence the spatial and temporal distribution of hydrological processes and water resources in general, have a substantial impact on hydropower generation. The utilization of an optimization approach in order to analyze the operation of reservoirs is an important concern in the planning and management of water resources. The SWAT (Soil and Water Assessment Tool) and the HEC-ResPRM (Hydrologic Engineering Center reservoir evaluation system Prescriptive Reservoir Model) were combined to model and optimize the Nashe hydropower reservoir operation in the Blue Nile River Basin (BNRB). The stream flow into the reservoir was determined using the SWAT model, considering the current and future impacts of LULC changes. The HEC-ResPRM model has been utilized in order to generate the optimal hydropower reservoir operation by using the results of the SWAT calibrated and validated stream flow as input data. This study proposes a method for integrating the HEC-ResPRM and SWAT models to examine the effects of historical and future land use land cover change on the watershed’s hydrological processes and reservoir operation. Therefore, the study aimed to investigate the current and future optimal reservoir operation scenarios for water resources management concerning hydropower generation under the effect of LULC changes. The results reveal that both the 2035 and 2050 LULC change scenarios show the increased operation of hydropower reservoirs with increasing reservoir inflows, releases, storage, and reservoir elevation in the future. The effects of LULC change on the study area’s hydrological components reveal an increase in surface runoff until 2035, and its decrease from 2035 to 2050. The average annual reservoir storage and elevation in the 2050 LULC scenario increased by 7.25% and 2.27%, respectively, when compared to the current optimized scenario. Therefore, changes in LULC have a significant effect on hydropower development by changing the total annual and monthly reservoir inflow volumes and their seasonal distribution. Reservoir operating rule curves have been commonly implemented in the operation of hydropower reservoirs, since they help operators to make essential, optimal decisions with available stream flow. Moreover, the generated future reservoir rule curves can be utilized as a reference for the long-term prediction of hydropower generation capacity, and assist concerned authorities in the successful operation of the reservoir under the impact of LULC changes. Full article
Show Figures

Figure 1

18 pages, 2249 KB  
Article
Optimal Operation of Hydropower Reservoirs under Climate Change: The Case of Tekeze Reservoir, Eastern Nile
by Fikru Fentaw Abera, Dereje Hailu Asfaw, Agizew Nigussie Engida and Assefa M. Melesse
Water 2018, 10(3), 273; https://doi.org/10.3390/w10030273 - 5 Mar 2018
Cited by 56 | Viewed by 8332
Abstract
Optimal operation of reservoirs is very essential for water resource planning and management, but it is very challenging and complicated when dealing with climate change impacts. The objective of this paper was to assess existing and future hydropower operation at the Tekeze reservoir [...] Read more.
Optimal operation of reservoirs is very essential for water resource planning and management, but it is very challenging and complicated when dealing with climate change impacts. The objective of this paper was to assess existing and future hydropower operation at the Tekeze reservoir in the face of climate change. In this study, a calibrated and validated Soil and Water Assessment Tool (SWAT) was used to model runoff inflow into the Tekeze hydropower reservoir under present and future climate scenarios. Inflow to the reservoir was simulated using hydro-climatic data from an ensemble of downscaled climate data based on the Coordinated Regional climate Downscaling Experiment over African domain (CORDEX-Africa) with Coupled Intercomparison Project Phase 5 (CMIP5) simulations under Representative Concentration Pathway (RCP)4.5 and RCP8.5 climate scenarios. Observed and projected inflows to Tekeze hydropower reservoir were used as input to the US Army Corps of Engineer’s Reservoir Evaluation System Perspective Reservoir Model (HEC-ResPRM), a reservoir operation model, to optimize hydropower reservoir release, storage and pool level. Results indicated that climate change has a clear impact on reservoir inflow and showed increase in annual and monthly inflow into the reservoir except in dry months from May to June under RCP4.5 and RCP8.5 climate scenarios. HEC-ResPRM optimal operation results showed an increase in Tekeze reservoir power storage potential up to 25% and 30% under RCP4.5 and RCP8.5 climate scenarios, respectively. This implies that Tekeze hydropower production will be affected by climate change. This analysis can be used by water resources planners and mangers to develop reservoir operation techniques considering climate change impact to increase power production. Full article
(This article belongs to the Special Issue Adaptive Catchment Management and Reservoir Operation)
Show Figures

Figure 1

Back to TopTop