Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Gordoniaceae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2656 KiB  
Article
Quantifying Resilience in Single-Host/Single-Virus Infections
by Socheata Hour, Andrew Pierce, Sobroney Ying Heng, Ruth Plymale and Ruben Michael Ceballos
Appl. Microbiol. 2025, 5(1), 18; https://doi.org/10.3390/applmicrobiol5010018 - 10 Feb 2025
Cited by 1 | Viewed by 711
Abstract
Due to theoretical and practical applications in biomedical, environmental, and industrial microbiology, robust metrics for quantifying the virulence of pathogens is vital. For many virus–host systems, multiple virus strains propagate through host populations. Each strain may exhibit a different virulence level. Likewise, different [...] Read more.
Due to theoretical and practical applications in biomedical, environmental, and industrial microbiology, robust metrics for quantifying the virulence of pathogens is vital. For many virus–host systems, multiple virus strains propagate through host populations. Each strain may exhibit a different virulence level. Likewise, different hosts may manifest different levels of host resilience to infection by a given virus. Recent publications have assessed metrics for quantifying virulence (VR) from growth curve data. Regardless of the metric used, a feature that most methods have in common is focus on the exponential growth phase of virus–host interactions. Often ignored is mortality phase. Following a report introducing the Stacy–Ceballos Inhibition Index (ISC), a robust metric to quantify relative virulence (VR) between viruses, we have turned attention to quantifying relative resilience (RR) between hosts in single-virus/single-host (SVSH) experimental infections. Although resilience during viral infection impacts the entire host growth curve, RR has particular biological significance during the mortality phase. In this report, we argue that calculating RR using a modified ISC provides a robust metric for comparisons between SVSH infections. Wet lab data from fusellovirus infections in Sulfolobales, bacteriophage infections in Mycobacteriales, and simulated infected-host growth profiles form the basis for developing this metric, RR, for quantifying resilience. Full article
Show Figures

Figure 1

15 pages, 803 KiB  
Article
Use of Shotgun Metagenomics to Assess the Microbial Diversity and Hydrocarbons Degrading Functions of Auto-Mechanic Workshops Soils Polluted with Gasoline and Diesel Fuel
by Emerance Jessica Claire D’Assise Goma-Tchimbakala, Ilaria Pietrini, Joseph Goma-Tchimbakala and Stefano Paolo Corgnati
Microorganisms 2023, 11(3), 722; https://doi.org/10.3390/microorganisms11030722 - 10 Mar 2023
Cited by 6 | Viewed by 3206
Abstract
Bioaugmentation is a valuable technique for oil recovery. This study investigates the composition and functions of microbial communities in gasoline- and diesel-contaminated soils of garages Matoko (SGM) and Guy et Paul (SGP) originating from auto mechanic workshops as well as the concentration of [...] Read more.
Bioaugmentation is a valuable technique for oil recovery. This study investigates the composition and functions of microbial communities in gasoline- and diesel-contaminated soils of garages Matoko (SGM) and Guy et Paul (SGP) originating from auto mechanic workshops as well as the concentration of soil enzymes β-glucosidase, β-glucosaminidase, and acid phosphatase. The work aimed to evaluate the presence of petroleum-hydrocarbon-degrading bacteria for the development of foreseen bioremediation of oil-contaminated soils. Microbial diversity, as given by shotgun metagenomics, indicated the presence of 16 classes, among which Actinobacteria and Gammaproteobacteria dominated, as well as more than 50 families, including the dominant Gordoniaceae (26.63%) in SGM and Pseudomonadaceae (57.89%) in SGP. The dominant bacterial genera in the two soils were, respectively, Gordonia (26.7%) and Pseudomonas (57.9%). The exploration of the bacterial metabolic abilities using HUMANn2 allowed to detect genes and pathways involved in alkanes and aromatic hydrocarbons in the two contaminated soils. Furthermore, enzymes β-glucosidase, β-glucosaminidase, and acid phosphatase were found in high concentrations ranging between 90.27 ± 5.3 and 804.17 ± 20.5 µg pN/g soil/h, which indicated active microbial metabolism. The high diversity of microorganisms with a hydrocarbon degradation genetic package revealed that the bacteria inhabiting the two soils are likely good candidates for the bioaugmentation of oil-contaminated soils. Full article
(This article belongs to the Special Issue Petroleum Microbiology 2.0)
Show Figures

Figure 1

19 pages, 405 KiB  
Review
Methods of Identifying Gordonia Strains in Clinical Samples
by Ekaterina Frantsuzova, Alexander Bogun, Anna Vetrova and Yanina Delegan
Pathogens 2022, 11(12), 1496; https://doi.org/10.3390/pathogens11121496 - 8 Dec 2022
Cited by 6 | Viewed by 2951
Abstract
Gordonia spp. are members of the family Gordoniacea in the suborder Corynebacteriales; their habitat, in most cases, is soil. Many representatives of this genus are human or veterinary pathogens. The main cause of the lack of a standardized approach to dealing with [...] Read more.
Gordonia spp. are members of the family Gordoniacea in the suborder Corynebacteriales; their habitat, in most cases, is soil. Many representatives of this genus are human or veterinary pathogens. The main cause of the lack of a standardized approach to dealing with infections caused by Gordonia is their erroneous identification and little information regarding their susceptibility to antimicrobial drugs. This review presents the most common methods for identifying Gordonia strains, including modern approaches for identifying a species. The main prospects and future directions of this field of knowledge are briefly presented. Full article
Back to TopTop