Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Gondwania regalis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 10898 KiB  
Article
Antioxidant and Antidiabetic Potential of the Antarctic Lichen Gondwania regalis Ethanolic Extract: Metabolomic Profile and In Vitro and In Silico Evaluation
by Alfredo Torres-Benítez, José Erick Ortega-Valencia, Nicolás Jara-Pinuer, Jaqueline Stephanie Ley-Martínez, Salvador Herrera Velarde, Iris Pereira, Marta Sánchez, María Pilar Gómez-Serranillos, Ferdinando Carlo Sasso, Mario Simirgiotis and Alfredo Caturano
Antioxidants 2025, 14(3), 298; https://doi.org/10.3390/antiox14030298 - 28 Feb 2025
Viewed by 1021
Abstract
Lichens are an important source of diverse and unique secondary metabolites with recognized biological activities through experimental and computational procedures. The objective of this study is to investigate the metabolomic profile of the ethanolic extract of the Antarctic lichen Gondwania regalis and evaluate [...] Read more.
Lichens are an important source of diverse and unique secondary metabolites with recognized biological activities through experimental and computational procedures. The objective of this study is to investigate the metabolomic profile of the ethanolic extract of the Antarctic lichen Gondwania regalis and evaluate its antioxidant and antidiabetic activities with in vitro, in silico, and molecular dynamics simulations. Twenty-one compounds were tentatively identified for the first time using UHPLC/ESI/QToF/MS in negative mode. For antioxidant activity, the DPPH assay showed an IC50 value of 2246.149 µg/mL; the total phenolic content was 31.9 mg GAE/g, the ORAC assay was 13.463 µmol Trolox/g, and the FRAP assay revealed 6.802 µmol Trolox/g. Regarding antidiabetic activity, enzyme inhibition yielded IC50 values of 326.4513 µg/mL for pancreatic lipase, 19.49 µg/mL for α-glucosidase, and 585.216 µg/mL for α-amylase. Molecular docking identified sekikaic acid as the most promising compound, with strong binding affinities to catalytic sites, while molecular dynamics confirmed its stability and interactions. Toxicological and pharmacokinetic analyses supported its drug-like potential without significant risks. These findings suggest that the ethanolic extract of Gondwania regalis is a promising source of bioactive compounds for developing natural antioxidant and antidiabetic therapies. Full article
Show Figures

Figure 1

Back to TopTop