Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Glimm-Bratteli symbols

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 310 KiB  
Article
Classification of Integrodifferential C-Algebras
by Anton A. Kutsenko
Symmetry 2021, 13(10), 1900; https://doi.org/10.3390/sym13101900 - 9 Oct 2021
Viewed by 1645
Abstract
The infinite product of matrices with integer entries, known as a modified Glimm–Bratteli symbol n, is a new, sufficiently simple, and very powerful tool for the characterization of approximately finite-dimensional (AF) algebras. This symbol provides a convenient algebraic representation of the Bratteli [...] Read more.
The infinite product of matrices with integer entries, known as a modified Glimm–Bratteli symbol n, is a new, sufficiently simple, and very powerful tool for the characterization of approximately finite-dimensional (AF) algebras. This symbol provides a convenient algebraic representation of the Bratteli diagram for AF algebras in the same way as was previously performed by J. Glimm for more simple uniformly hyperfinite (UHF) algebras. We apply this symbol to characterize integrodifferential algebras. The integrodifferential algebra FN,M is the C-algebra generated by the following operators acting on L2([0,1)NCM): (1) operators of multiplication by bounded matrix-valued functions, (2) finite-difference operators, and (3) integral operators. Most of the operators and their approximations studying in physics belong to these algebras. We give a complete characterization of FN,M. In particular, we show that FN,M does not depend on M, but depends on N. At the same time, it is known that differential algebras HN,M, generated by the operators (1) and (2) only, do not depend on both dimensions N and M; they are all ∗-isomorphic to the universal UHF algebra. We explicitly compute the Glimm–Bratteli symbols (for HN,M, it was already computed earlier) which completely characterize the corresponding AF algebras. This symbol n is an infinite product of matrices with nonnegative integer entries. Roughly speaking, all the symmetries appearing in the approximation of complex infinite-dimensional integrodifferential and differential algebras by finite-dimensional ones are coded by a product of integer matrices. Full article
(This article belongs to the Special Issue Mathematical Physics: Topics and Advances)
Show Figures

Figure 1

Back to TopTop