Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Generelized Chaplygin gas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1225 KB  
Article
A Study on the Various Aspects of Bounce Realisation for Some Choices of Scale Factors
by Sanghati Saha, Ertan Güdekli and Surajit Chattopadhyay
Symmetry 2023, 15(7), 1332; https://doi.org/10.3390/sym15071332 - 29 Jun 2023
Cited by 7 | Viewed by 2519
Abstract
The current study examines the realisation of cosmic bounce in two situations involving two distinct scale factor selections, one of which is a scale factor already developed for bouncing and the other of which is a scale factor created by truncating a series [...] Read more.
The current study examines the realisation of cosmic bounce in two situations involving two distinct scale factor selections, one of which is a scale factor already developed for bouncing and the other of which is a scale factor created by truncating a series expansion of a de Sitter scale factor. Generalized Chaplygin gas (GCG) is assumed to be the background fluid in both situations. When the scale factor is set to the first kind, the pre-bounce scenario’s GCG energy density decreases due to contraction, reaches its lowest point at t=0 during the bounce, and then rises as a result of expansion following the bounce. However, it is noted that the truncation has an impact on the density evolution from pre-bounce in the other scale factor scenario. The influence of bulk viscosity is shown in all circumstances, in addition to the influence of non-viscosity, and the test for stability makes use of the squared speed of sound. At the turn-around places, the null energy criterion is also violated. The final stage of the study includes a cosmographic analysis and a demonstration of the Hubble flow dynamics. In conclusion, we find that inflationary cosmology can also be realized with GCG as the background fluid for two-scale factor options. When the equivalent cosmic parameter is examined for pre-bounce and post-bounce scenarios, a symmetry is frequently seen. The symmetry occurs near the point of bouncing or turning. Full article
(This article belongs to the Special Issue Symmetry: Feature Papers 2023)
Show Figures

Figure 1

27 pages, 1086 KB  
Article
Realization of Bounce in a Modified Gravity Framework and Information Theoretic Approach to the Bouncing Point
by Sanghati Saha and Surajit Chattopadhyay
Universe 2023, 9(3), 136; https://doi.org/10.3390/universe9030136 - 6 Mar 2023
Cited by 15 | Viewed by 2457
Abstract
In this work, we report a study on bouncing cosmology with modified generalized Chaplygin Gas (mgCG) in a bulk viscosity framework. Reconstruction schemes were demonstrated in Einstein and modified f(T) gravity framework under the purview of viscous cosmological settings. We [...] Read more.
In this work, we report a study on bouncing cosmology with modified generalized Chaplygin Gas (mgCG) in a bulk viscosity framework. Reconstruction schemes were demonstrated in Einstein and modified f(T) gravity framework under the purview of viscous cosmological settings. We also took non-viscous cases into account. We studied the equation of state (EoS) parameter under various circumstances and judged the stability of the models through the sign of the squared speed of sound. We observed the mgCG behaving like avoidance of Big Rip in the presence of bulk viscosity at the turnaround point and in non-viscous cases, a phantom-like behavior appears. The turnaround point equation of state parameter crosses the phantom boundary, violating NEC. The role of the mgCG’s model parameters was also investigated before and after the bounce. A Hubble flow dynamics was carried out and, it was revealed that mgCG is capable of realizing an inflationary phase as well as an exit from inflation. An f(T) gravitational paradigm was also considered, where the mgCG density was reconstructed in the presence of bulk viscosity. The role of the parameters associated with the bouncing scale factor, describing how fast the bounce takes place, was also studied in this framework. Finally, the reconstructed mgCG turned out to be stable against small perturbations irrespective of the presence of bulk viscosity and modified gravity scenario. Finally, the reconstruction scheme was assessed using statistical analysis, Shannon entropy. Full article
(This article belongs to the Collection Modified Theories of Gravity and Cosmological Applications)
Show Figures

Figure 1

Back to TopTop