Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Generalized Interpolation Material Point Method (GIMP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5889 KiB  
Article
Investigating Three-Dimensional Auxetic Structural Responses to Impact Loading with the Generalized Interpolation Material Point Method
by Xiatian Zhuang, Yu-Chen Su and Zhen Chen
Buildings 2025, 15(16), 2878; https://doi.org/10.3390/buildings15162878 - 14 Aug 2025
Abstract
Understanding three-dimensional (3D) auxetic structural responses to impact loading remains challenging due to large deformations involving failure evolution and the interaction between geometric and material instabilities. In this study, the Generalized Interpolation Material Point Method (GIMP) is used to investigate representative auxetic structures, [...] Read more.
Understanding three-dimensional (3D) auxetic structural responses to impact loading remains challenging due to large deformations involving failure evolution and the interaction between geometric and material instabilities. In this study, the Generalized Interpolation Material Point Method (GIMP) is used to investigate representative auxetic structures, with the focus on the negative Poisson’s ratio effect on the responses to impact loading. Using a cubic lattice model for 3D re-entrant structures, simulations with different impact speeds are performed to evaluate corresponding energy absorption characteristics and deformation behaviors. Three constitutive models for lattice materials (linear elasticity, elastoplasticity, and damage) are employed to analyze the corresponding variations in auxetic structural performance. The computational results indicate that distinct deformation mechanisms are mainly associated with microstructural geometry, while the constitutive modeling effect is not significant. The findings demonstrate the importance of the process–structure–property relationship in the impact performance of protective structures. Verification against theoretical predictions of the Poisson’s ratio–strain relationship confirms the potential of GIMP in effectively engineering auxetic structures for general applications. Full article
(This article belongs to the Special Issue Extreme Performance of Composite and Protective Structures)
Show Figures

Figure 1

10 pages, 863 KiB  
Article
An Insight to High Humidity-Caused Friction Modulation of Brake by Numerical Modeling of Dynamic Meniscus under Shearing
by Liangbiao Chen, Gang (Sheng) Chen and James Chang
Lubricants 2015, 3(2), 437-446; https://doi.org/10.3390/lubricants3020437 - 19 May 2015
Cited by 5 | Viewed by 5145
Abstract
To obtain an insight to high humidity-caused friction modulation in brake pad-rotor interface, the adhesion phenomenon due to a liquid bridge is simulated using an advanced particle method by varying the shearing speed of the interface. The method, called generalized interpolation material point [...] Read more.
To obtain an insight to high humidity-caused friction modulation in brake pad-rotor interface, the adhesion phenomenon due to a liquid bridge is simulated using an advanced particle method by varying the shearing speed of the interface. The method, called generalized interpolation material point for fluid-solid interactions (GIMP-FSI), was recently developed from the material point method (MPM) for fluid-solid interactions at small scales where surface tension dominates, thus suitable for studying the partially wet brake friction due to high humidity at a scale of 10 m. Dynamic capillary effects due to surface tension and contact angles are simulated. Adhesion forces calculated by GIMP-FSI are consistent with those from the existing approximate meniscus models. Moreover, the numerical results show that capillary effects induce modulations of adhesion as slip speed changes. In particular, the adhesion modulation could be above 30% at low speed. This finding provides insights into how the high humidity-caused friction could cause modulations of brake, which are unable to be achieved by conventional models. Therefore, the numerical analysis helps to elucidate the complex friction mechanisms associated with brakes that are exposed to high humidity environments. Full article
(This article belongs to the Special Issue Numerical Simulation of Static and Dynamic Friction)
Show Figures

Figure 1

Back to TopTop