Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = GCase dimer structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4023 KB  
Article
Investigating the Impact of the Parkinson’s-Associated GBA1 E326K Mutation on β-Glucocerebrosidase Dimerization and Interactome Dynamics Through an In Silico Approach
by Davide Pietrafesa, Alessia Casamassa, Barbara Benassi, Massimo Santoro, Massimo Marano, Claudia Consales, Jessica Rosati and Caterina Arcangeli
Int. J. Mol. Sci. 2024, 25(21), 11443; https://doi.org/10.3390/ijms252111443 - 24 Oct 2024
Cited by 3 | Viewed by 10760
Abstract
Heterozygous mutations or genetic variants in the GBA1 gene, which encodes for the β-glucocerebrosidase (GCase), a lysosomal hydrolase enzyme, may increase the risk of Parkinson’s disease (PD) onset. The heterozygous E326K form is one of the most common genetic risk factors for PD [...] Read more.
Heterozygous mutations or genetic variants in the GBA1 gene, which encodes for the β-glucocerebrosidase (GCase), a lysosomal hydrolase enzyme, may increase the risk of Parkinson’s disease (PD) onset. The heterozygous E326K form is one of the most common genetic risk factors for PD worldwide, but, to date, the underlying molecular mechanisms remain unclear. Here, we investigate the effect of the E326K on the structure, stability, dimerization process, and interaction mode with some proteins of the interactome of GCase using multiple molecular dynamics (MD) simulations at pH 5.5 and pH 7.0 to mimic the lysosomal and endoplasmic reticulum environments, respectively. The analysis of the MD trajectories highlights that the E326K mutation did not significantly alter the structural conformation of the catalytic dyad but significantly makes the structure of the dimeric complexes unstable, especially at lysosomal pH, potentially impacting the organization of the quaternary structure. Furthermore, the E326K mutation significantly impacts protein interactions by altering the binding mode with the activator Saposin C (SapC), reducing the binding affinity with the inhibitor α-Synuclein (α-Syn), and increasing the affinity for the Lysosomal integral membrane protein-2 (LIMP-2) transporter. Full article
Show Figures

Graphical abstract

Back to TopTop