Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = GCEF

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3943 KB  
Technical Note
Automated Workflow for High-Resolution 4D Vegetation Monitoring Using Stereo Vision
by Martin Kobe, Melanie Elias, Ines Merbach, Martin Schädler, Jan Bumberger, Marion Pause and Hannes Mollenhauer
Remote Sens. 2024, 16(3), 541; https://doi.org/10.3390/rs16030541 - 31 Jan 2024
Cited by 3 | Viewed by 3088
Abstract
Precision agriculture relies on understanding crop growth dynamics and plant responses to short-term changes in abiotic factors. In this technical note, we present and discuss a technical approach for cost-effective, non-invasive, time-lapse crop monitoring that automates the process of deriving further plant parameters, [...] Read more.
Precision agriculture relies on understanding crop growth dynamics and plant responses to short-term changes in abiotic factors. In this technical note, we present and discuss a technical approach for cost-effective, non-invasive, time-lapse crop monitoring that automates the process of deriving further plant parameters, such as biomass, from 3D object information obtained via stereo images in the red, green, and blue (RGB) color space. The novelty of our approach lies in the automated workflow, which includes a reliable automated data pipeline for 3D point cloud reconstruction from dynamic scenes of RGB images with high spatio-temporal resolution. The setup is based on a permanent rigid and calibrated stereo camera installation and was tested over an entire growing season of winter barley at the Global Change Experimental Facility (GCEF) in Bad Lauchstädt, Germany. For this study, radiometrically aligned image pairs were captured several times per day from 3 November 2021 to 28 June 2022. We performed image preselection using a random forest (RF) classifier with a prediction accuracy of 94.2% to eliminate unsuitable, e.g., shadowed, images in advance and obtained 3D object information for 86 records of the time series using the 4D processing option of the Agisoft Metashape software package, achieving mean standard deviations (STDs) of 17.3–30.4 mm. Finally, we determined vegetation heights by calculating cloud-to-cloud (C2C) distances between a reference point cloud, computed at the beginning of the time-lapse observation, and the respective point clouds measured in succession with an absolute error of 24.9–35.6 mm in depth direction. The calculated growth rates derived from RGB stereo images match the corresponding reference measurements, demonstrating the adequacy of our method in monitoring geometric plant traits, such as vegetation heights and growth spurts during the stand development using automated workflows. Full article
Show Figures

Graphical abstract

19 pages, 1583 KB  
Article
Effect of Enriching Gingerbread Cookies with Elder (Sambucus nigra L.) Products on Their Phenolic Composition, Antioxidant and Anti-Glycation Properties, and Sensory Acceptance
by Patrycja Topka, Szymon Poliński, Tomasz Sawicki, Aleksandra Szydłowska-Czerniak and Małgorzata Tańska
Int. J. Mol. Sci. 2023, 24(2), 1493; https://doi.org/10.3390/ijms24021493 - 12 Jan 2023
Cited by 9 | Viewed by 3621
Abstract
Elder products are still underutilized sources of phytochemicals, mainly polyphenols, with extensive pharmacological effects on the human body. In this study, gingerbread cookies covered in chocolate (GC) were enriched with elderflower dry extract (EF) and juice concentrate (EB). The cookies (GC, GCEF, and [...] Read more.
Elder products are still underutilized sources of phytochemicals, mainly polyphenols, with extensive pharmacological effects on the human body. In this study, gingerbread cookies covered in chocolate (GC) were enriched with elderflower dry extract (EF) and juice concentrate (EB). The cookies (GC, GCEF, and GCEFEB) and the additives (EF and EB) were analyzed for total phenolic content (TPC), phenolic compound profile, antioxidant capacity (AC), and advanced glycation end products’ (AGEs) formation in both the free and bound phenolic fractions. Sensory analysis of the cookies was performed using an effective acceptance test (9-point hedonic scale), and purchase intent was evaluated using a 5-point scale. It was found that the flavonoid content was significantly increased (20–60%) when EF and EB were added to the cookies. Moreover, the EF addition to chocolate-covered GCs enhanced the content of phenolic acids (up to 28%) in the bound phenolic fraction. An increase in the AC values of enriched cookies was found, and the free phenolic fraction differed significantly in this regard. However, inhibition of AGEs by elder products was only observed in the bound phenolic fraction. In addition, EF and EB improved the overall acceptance of the cookies, mostly their taste and texture. Thus, elder products appear to be valuable additives to gingerbread cookies, providing good sensory quality and functional food characteristics. Full article
(This article belongs to the Special Issue The Molecular Links between Nutrients and Aging)
Show Figures

Figure 1

15 pages, 6301 KB  
Article
Gallic Acid Crosslinked Gelatin and Casein Based Composite Films for Food Packaging Applications
by Saurabh Bhatia, Ahmed Al-Harrasi, Mohammed Said Al-Azri, Sana Ullah, Hafiz A. Makeen, Abdulkarim M. Meraya, Mohammed Albratty, Asim Najmi and Md. Khalid Anwer
Polymers 2022, 14(19), 4065; https://doi.org/10.3390/polym14194065 - 28 Sep 2022
Cited by 52 | Viewed by 5050
Abstract
In the current work, we fabricated gelatin–casein-based edible films (GC-EFs) crosslinked with gallic acid (GA). We analyzed the physiochemical characteristics, crystallinity, thermal stability, and surface properties of the EFs using Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron [...] Read more.
In the current work, we fabricated gelatin–casein-based edible films (GC-EFs) crosslinked with gallic acid (GA). We analyzed the physiochemical characteristics, crystallinity, thermal stability, and surface properties of the EFs using Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). It was found that the edible films possessed a semi-crystalline structure. Addition of GA enhanced the thermal stability of the edible films as well as the surface properties of the films. It was found that a higher concentration of GA (4–5% w/v) significantly improved the surface properties, observed in the surface and cross-sectional examination of SEM micrographs. EFs containing higher amounts of GA showed more compact and denser structures with smoother and more homogeneous surfaces than the control samples. In addition, swelling degree (SD), thickness, water solubility (WS), moisture content (MC), and water vapor permeability (WVP) were found to be low in EFs containing more GA concentration. Mechanical parameters revealed that the Young modulus (Ym) and tensile strength (TS) increased with a rise in GA concentration, and elongation at break (EB) reduced with a rise in GA concentration. In transparency and color analysis, it was observed that GA positively affected the transparency of the edible films. Full article
(This article belongs to the Special Issue Development and Characterization of Edible Films)
Show Figures

Figure 1

17 pages, 2822 KB  
Article
Future Climate Significantly Alters Fungal Plant Pathogen Dynamics during the Early Phase of Wheat Litter Decomposition
by Sara Fareed Mohamed Wahdan, Shakhawat Hossen, Benjawan Tanunchai, Martin Schädler, François Buscot and Witoon Purahong
Microorganisms 2020, 8(6), 908; https://doi.org/10.3390/microorganisms8060908 - 16 Jun 2020
Cited by 26 | Viewed by 6041
Abstract
Returning wheat residues to the soil is a common practice in modern agricultural systems and is considered to be a sustainable practice. However, the negative contribution of these residues in the form of “residue-borne pathogens” is recognized. Here, we aimed to investigate the [...] Read more.
Returning wheat residues to the soil is a common practice in modern agricultural systems and is considered to be a sustainable practice. However, the negative contribution of these residues in the form of “residue-borne pathogens” is recognized. Here, we aimed to investigate the structure and ecological functions of fungal communities colonizing wheat residues during the early phase of decomposition in a conventional farming system. The experiment was conducted under both ambient conditions and a future climate scenario expected in 50–70 years from now. Using MiSeq Illumina sequencing of the fungal internal transcribed spacer 2 (ITS2), we found that plant pathogenic fungi dominated (~87% of the total sequences) within the wheat residue mycobiome. Destructive wheat fungal pathogens such as Fusarium graminearum, Fusarium tricinctum, and Zymoseptoria tritci were detected under ambient and future climates. Moreover, future climate enhanced the appearance of new plant pathogenic fungi in the plant residues. Our results based on the bromodeoxyuridine (BrdU) immunocapture technique demonstrated that almost all detected pathogens are active at the early stage of decomposition under both climate scenarios. In addition, future climate significantly changed both the richness patterns and the community dynamics of the total, plant pathogenic and saprotrophic fungi in wheat residues as compared with the current ambient climate. We conclude that the return of wheat residues can increase the pathogen load, and therefore have negative consequences for wheat production in the future. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

Back to TopTop