Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = GCDH gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1731 KiB  
Review
Genetic Polymorphisms Associated with Fetal Hemoglobin (HbF) Levels and F-Cell Numbers: A Systematic Review of Genome-Wide Association Studies
by Coralea Stephanou, Stephan Menzel, Sjaak Philipsen and Petros Kountouris
Int. J. Mol. Sci. 2024, 25(21), 11408; https://doi.org/10.3390/ijms252111408 - 23 Oct 2024
Cited by 1 | Viewed by 2483
Abstract
Elevated fetal hemoglobin (HbF), which is partly controlled by genetic modifiers, ameliorates disease severity in β hemoglobinopathies. Understanding the genetic basis of this trait holds great promise for personalized therapeutic approaches. PubMed, MedRxiv, and the GWAS Catalog were searched up to May 2024 [...] Read more.
Elevated fetal hemoglobin (HbF), which is partly controlled by genetic modifiers, ameliorates disease severity in β hemoglobinopathies. Understanding the genetic basis of this trait holds great promise for personalized therapeutic approaches. PubMed, MedRxiv, and the GWAS Catalog were searched up to May 2024 to identify eligible GWAS studies following PRISMA guidelines. Four independent reviewers screened, extracted, and synthesized data using narrative and descriptive methods. Study quality was assessed using a modified version of the Q-Genie tool. Pathway enrichment analysis was conducted on gene lists derived from the selected GWAS studies. Out of 113 initially screened studies, 62 underwent full-text review, and 16 met the inclusion criteria for quality assessment and data synthesis. A total of 939 significant SNP-trait associations (p-value < 1 × 10−5) were identified, mapping to 133 genes (23 with overlapping variant positions) and 103 intergenic sequences. Most SNP-trait associations converged around BCL11A (chr.2), HBS1L-MYB, (chr.6), olfactory receptor and beta globin (HBB) gene clusters (chr.11), with less frequent loci including FHIT (chr.3), ALDH8A1, BACH2, RPS6KA2, SGK1 (chr.6), JAZF1 (chr.7), MMP26 (chr.11), COCH (chr.14), ABCC1 (chr.16), CTC1, PFAS (chr.17), GCDH, KLF1, NFIX, and ZBTB7A (chr.19). Pathway analysis highlighted Gene Ontology (GO) terms and pathways related to olfaction, hemoglobin and haptoglobin binding, and oxygen carrier activity. This systematic review confirms established genetic modifiers of HbF level, while highlighting less frequently associated loci as promising areas for further research. Expanding research across ethnic populations is essential for advancing personalized therapies and enhancing outcomes for individuals with sickle cell disease or β-thalassemia. Full article
Show Figures

Figure 1

17 pages, 2650 KiB  
Article
Compilation of Genotype and Phenotype Data in GCDH-LOVD for Variant Classification and Further Application
by Alexandra Tibelius, Christina Evers, Sabrina Oeser, Isabelle Rinke, Anna Jauch and Katrin Hinderhofer
Genes 2023, 14(12), 2218; https://doi.org/10.3390/genes14122218 - 14 Dec 2023
Cited by 1 | Viewed by 3576
Abstract
Glutaric aciduria type 1 (GA-1) is a rare but treatable autosomal-recessive neurometabolic disorder of lysin metabolism caused by biallelic pathogenic variants in glutaryl-CoA dehydrogenase gene (GCDH) that lead to deficiency of GCDH protein. Without treatment, this enzyme defect causes a neurological [...] Read more.
Glutaric aciduria type 1 (GA-1) is a rare but treatable autosomal-recessive neurometabolic disorder of lysin metabolism caused by biallelic pathogenic variants in glutaryl-CoA dehydrogenase gene (GCDH) that lead to deficiency of GCDH protein. Without treatment, this enzyme defect causes a neurological phenotype characterized by movement disorder and cognitive impairment. Based on a comprehensive literature search, we established a large dataset of GCDH variants using the Leiden Open Variation Database (LOVD) to summarize the known genotypes and the clinical and biochemical phenotypes associated with GA-1. With these data, we developed a GCDH-specific variation classification framework based on American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines. We used this framework to reclassify published variants and to describe their geographic distribution, both of which have practical implications for the molecular genetic diagnosis of GA-1. The freely available GCDH-specific LOVD dataset provides a basis for diagnostic laboratories and researchers to further optimize their knowledge and molecular diagnosis of this rare disease. Full article
(This article belongs to the Special Issue Molecular and Genetic Diagnosis of Rare Diseases)
Show Figures

Figure 1

9 pages, 1188 KiB  
Article
Glutaric Aciduria Type I Missed by Newborn Screening: Report of Four Cases from Three Families
by Johannes Spenger, Esther M. Maier, Katharina Wechselberger, Florian Bauder, Melanie Kocher, Wolfgang Sperl, Martin Preisel, Katharina A. Schiergens, Vassiliki Konstantopoulou, Wulf Röschinger, Johannes Häberle, Thomas Schmitt-Mechelke, Saskia B. Wortmann and Ralph Fingerhut
Int. J. Neonatal Screen. 2021, 7(2), 32; https://doi.org/10.3390/ijns7020032 - 18 Jun 2021
Cited by 9 | Viewed by 4783 | Correction
Abstract
Glutaric aciduria type I (GA-1) is a rare autosomal-recessive disorder of the degradation of the amino acids lysine and tryptophan caused by mutations of the GCDH gene encoding glutaryl-CoA-dehydrogenase. Newborn screening (NBS) for this condition is based on elevated levels of glutarylcarnitine (C5DC) [...] Read more.
Glutaric aciduria type I (GA-1) is a rare autosomal-recessive disorder of the degradation of the amino acids lysine and tryptophan caused by mutations of the GCDH gene encoding glutaryl-CoA-dehydrogenase. Newborn screening (NBS) for this condition is based on elevated levels of glutarylcarnitine (C5DC) in dried blood spots (DBS). Here we report four cases from three families in whom a correctly performed NBS did not detect the condition. Glutarylcarnitine concentrations were either normal (slightly below) or slightly above the cut-off. Ratios to other acylcarnitines were also not persistently elevated. Therefore, three cases were defined as screen negative, and one case was defined as normal, after a normal control DBS sample. One patient was diagnosed after an acute encephalopathic crisis, and the other three patients had an insidious onset of the disease. GA-1 was genetically confirmed in all cases. Despite extensive efforts to increase sensitivity and specificity of NBS for GA-1, by adjusting cut-offs and introducing various ratios, the biological diversity still leads to false-negative NBS results for GA-1. Full article
Show Figures

Figure 1

16 pages, 3102 KiB  
Article
Functional Recovery of a GCDH Variant Associated to Severe Deflavinylation—Molecular Insights into Potential Beneficial Effects of Riboflavin Supplementation in Glutaric Aciduria-Type I Patients
by Joana V. Ribeiro, Cláudio M. Gomes and Bárbara J. Henriques
Int. J. Mol. Sci. 2020, 21(19), 7063; https://doi.org/10.3390/ijms21197063 - 25 Sep 2020
Cited by 5 | Viewed by 4199
Abstract
Riboflavin is the biological precursor of two important flavin cofactors—flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN)—that are critical prosthetic groups in several redox enzymes. While dietary supplementation with riboflavin is a recognized support therapy in several inborn errors of metabolism, it has [...] Read more.
Riboflavin is the biological precursor of two important flavin cofactors—flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN)—that are critical prosthetic groups in several redox enzymes. While dietary supplementation with riboflavin is a recognized support therapy in several inborn errors of metabolism, it has yet unproven benefits in several other pathologies affecting flavoproteins. This is the case for glutaric aciduria type I (GA-I), a rare neurometabolic disorder associated with mutations in the GCDH gene, which encodes for glutaryl-coenzyme A (CoA) dehydrogenase (GCDH). Although there are a few reported clinical cases that have responded to riboflavin intake, there is still not enough molecular evidence supporting therapeutic recommendation. Hence, it is necessary to elucidate the molecular basis in favor of riboflavin supplementation in GA-I patients. Here, using a combination of biochemical and biophysical methodologies, we investigate the clinical variant GCDH-p.Val400Met as a model for a phenotype associated with severe deflavinylation. Through a systematic analysis, we establish that recombinant human GCDH-p.Val400Met is expressed in a nonfunctional apo form, which is mainly monomeric rather than tetrameric. However, we show that exogenous FAD is a driver for structural reorganization of the mutant enzyme with concomitant functional recovery, improved thermolability, and resistance to trypsin digestion. Overall, these results establish proof of principle for the beneficial effects of riboflavin supplementation in GA-I patients. Full article
(This article belongs to the Special Issue Flavin Adenine Dinucleotide (FAD): Biosynthesis and Function)
Show Figures

Graphical abstract

Back to TopTop