Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Freedman model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 304 KB  
Article
Derivation of Tensor Algebra as a Fundamental Operation—The Fermi Derivative in a General Metric Affine Space
by Michael Tsamparlis
Symmetry 2025, 17(1), 81; https://doi.org/10.3390/sym17010081 - 7 Jan 2025
Viewed by 1342
Abstract
The aim of this work is to demonstrate that all linear derivatives of the tensor algebra over a smooth manifold M can be viewed as specific cases of a broader concept—the operation of derivation. This approach reveals the universal role of differentiation, which [...] Read more.
The aim of this work is to demonstrate that all linear derivatives of the tensor algebra over a smooth manifold M can be viewed as specific cases of a broader concept—the operation of derivation. This approach reveals the universal role of differentiation, which simplifies and generalizes the study of tensor derivatives, making it a powerful tool in Differential Geometry and related fields. To perform this, the generic derivative is introduced, which is defined in terms of the quantities Qk(i)(X). Subsequently, the transformation law of these quantities is determined by the requirement that the generic derivative of a tensor is a tensor. The quantities Qk(i)(X) and their transformation law define a specific geometric object on M, and consequently, a geometric structure on M. Using the generic derivative, one defines the tensor fields of torsion and curvature and computes them for all linear derivatives in terms of the quantities Qk(i)(X). The general model is applied to the cases of Lie derivative, covariant derivative, and Fermi derivative. It is shown that the Lie derivative has non-zero torsion and zero curvature due to the Jacobi identity. For the covariant derivative, the standard results follow without any further calculations. Concerning the Fermi derivative, this is defined in a new way, i.e., as a higher-order derivative defined in terms of two derivatives: a given derivative and the Lie derivative. Being linear derivative, it has torsion and curvature tensor. These fields are computed in a general affine space from the corresponding general expressions of the generic derivative. Applications of the above considerations are discussed in a number of cases. Concerning the Lie derivative, it is been shown that the Poisson bracket is in fact a Lie derivative. Concerning the Fermi derivative, two applications are considered: (a) the explicit computation of the Fermi derivative in a general affine space and (b) the consideration of Freedman–Robertson–Walker spacetime endowed with a scalar torsion field, which satisfies the Cosmological Principle and the computation of Fermi derivative of the spatial directions defining a spatial frame along the cosmological fluid of comoving observers. It is found that torsion, even in this highly symmetric case, induces a kinematic rotation of the space axes, questioning the interpretation of torsion as a spin. Finally it is shown that the Lie derivative of the dynamical equations of an autonomous conservative dynamical system is equivalent to the standard Lie symmetry method. Full article
(This article belongs to the Special Issue Advances in Nonlinear Systems and Symmetry/Asymmetry)
14 pages, 407 KB  
Article
Fractional Derivatives with the Power-Law and the Mittag–Leffler Kernel Applied to the Nonlinear Baggs–Freedman Model
by José Francisco Gómez-Aguilar and Abdon Atangana
Fractal Fract. 2018, 2(1), 10; https://doi.org/10.3390/fractalfract2010010 - 9 Feb 2018
Cited by 35 | Viewed by 5241
Abstract
This paper considers the Freedman model using the Liouville–Caputo fractional-order derivative and the fractional-order derivative with Mittag–Leffler kernel in the Liouville–Caputo sense. Alternative solutions via Laplace transform, Sumudu–Picard and Adams–Moulton rules were obtained. We prove the uniqueness and existence of the solutions for [...] Read more.
This paper considers the Freedman model using the Liouville–Caputo fractional-order derivative and the fractional-order derivative with Mittag–Leffler kernel in the Liouville–Caputo sense. Alternative solutions via Laplace transform, Sumudu–Picard and Adams–Moulton rules were obtained. We prove the uniqueness and existence of the solutions for the alternative model. Numerical simulations for the prediction and interaction between a unilingual and a bilingual population were obtained for different values of the fractional order. Full article
(This article belongs to the Special Issue The Craft of Fractional Modelling in Science and Engineering)
Show Figures

Figure 1

Back to TopTop