Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Flory–De Gennes exponent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1554 KiB  
Article
Changes of Conformation in Albumin with Temperature by Molecular Dynamics Simulations
by Piotr Weber, Piotr Bełdowski, Krzysztof Domino, Damian Ledziński and Adam Gadomski
Entropy 2020, 22(4), 405; https://doi.org/10.3390/e22040405 - 1 Apr 2020
Cited by 5 | Viewed by 3850
Abstract
This work presents the analysis of the conformation of albumin in the temperature range of 300 K 312 K , i.e., in the physiological range. Using molecular dynamics simulations, we calculate values of the backbone and dihedral angles for this molecule. We [...] Read more.
This work presents the analysis of the conformation of albumin in the temperature range of 300 K 312 K , i.e., in the physiological range. Using molecular dynamics simulations, we calculate values of the backbone and dihedral angles for this molecule. We analyze the global dynamic properties of albumin treated as a chain. In this range of temperature, we study parameters of the molecule and the conformational entropy derived from two angles that reflect global dynamics in the conformational space. A thorough rationalization, based on the scaling theory, for the subdiffusion Flory–De Gennes type exponent of 0 . 4 unfolds in conjunction with picking up the most appreciable fluctuations of the corresponding statistical-test parameter. These fluctuations coincide adequately with entropy fluctuations, namely the oscillations out of thermodynamic equilibrium. Using Fisher’s test, we investigate the conformational entropy over time and suggest its oscillatory properties in the corresponding time domain. Using the Kruscal–Wallis test, we also analyze differences between the root mean square displacement of a molecule at various temperatures. Here we show that its values in the range of 306 K 309 K are different than in another temperature. Using the Kullback–Leibler theory, we investigate differences between the distribution of the root mean square displacement for each temperature and time window. Full article
Show Figures

Figure 1

Back to TopTop