Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Fetal liver tyrosine kinase (Flt3)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 404 KiB  
Review
Flt3 Signaling in B Lymphocyte Development and Humoral Immunity
by Kay L. Medina
Int. J. Mol. Sci. 2022, 23(13), 7289; https://doi.org/10.3390/ijms23137289 - 30 Jun 2022
Cited by 7 | Viewed by 3313
Abstract
The Class III receptor tyrosine kinase Flt3 and its ligand, the Flt3-ligand (FL), play an integral role in regulating the proliferation, differentiation, and survival of multipotent hematopoietic and lymphoid progenitors from which B cell precursors derive in bone marrow (BM). More recently, essential [...] Read more.
The Class III receptor tyrosine kinase Flt3 and its ligand, the Flt3-ligand (FL), play an integral role in regulating the proliferation, differentiation, and survival of multipotent hematopoietic and lymphoid progenitors from which B cell precursors derive in bone marrow (BM). More recently, essential roles for Flt3 signaling in the regulation of peripheral B cell development and affinity maturation have come to light. Experimental findings derived from a multitude of mouse models have reinforced the importance of molecular and cellular regulation of Flt3 and FL in lymphohematopoiesis and adaptive immunity. Here, we provide a comprehensive review of the current state of the knowledge regarding molecular and cellular regulation of Flt3/FL and the roles of Flt3 signaling in hematopoietic stem cell (HSC) activation, lymphoid development, BM B lymphopoiesis, and peripheral B cell development. Cumulatively, the literature has reinforced the importance of Flt3 signaling in B cell development and function. However, it has also identified gaps in the knowledge regarding Flt3-dependent developmental-stage specific gene regulatory circuits essential for steady-state B lymphopoiesis that will be the focus of future studies. Full article
(This article belongs to the Special Issue Roles of Cytokines in Lymphocyte Development and Function)
Show Figures

Figure 1

28 pages, 1411 KiB  
Review
Pathogenesis of Preeclampsia and Therapeutic Approaches Targeting the Placenta
by Manoj Kumar Jena, Neeta Raj Sharma, Matthew Petitt, Devika Maulik and Nihar Ranjan Nayak
Biomolecules 2020, 10(6), 953; https://doi.org/10.3390/biom10060953 - 24 Jun 2020
Cited by 177 | Viewed by 17922
Abstract
Preeclampsia (PE) is a serious pregnancy complication, affecting about 5–7% of pregnancies worldwide and is characterized by hypertension and damage to multiple maternal organs, primarily the liver and kidneys. PE usually begins after 20 weeks’ gestation and, if left untreated, can lead to [...] Read more.
Preeclampsia (PE) is a serious pregnancy complication, affecting about 5–7% of pregnancies worldwide and is characterized by hypertension and damage to multiple maternal organs, primarily the liver and kidneys. PE usually begins after 20 weeks’ gestation and, if left untreated, can lead to serious complications and lifelong disabilities—even death—in both the mother and the infant. As delivery is the only cure for the disease, treatment is primarily focused on the management of blood pressure and other clinical symptoms. The pathogenesis of PE is still not clear. Abnormal spiral artery remodeling, placental ischemia and a resulting increase in the circulating levels of vascular endothelial growth factor receptor-1 (VEGFR-1), also called soluble fms-like tyrosine kinase-1 (sFlt-1), are believed to be among the primary pathologies associated with PE. sFlt-1 is produced mainly in the placenta during pregnancy and acts as a decoy receptor, binding to free VEGF (VEGF-A) and placental growth factor (PlGF), resulting in the decreased bioavailability of each to target cells. Despite the pathogenic effects of increased sFlt-1 on the maternal vasculature, recent studies from our laboratory and others have strongly indicated that the increase in sFlt-1 in PE may fulfill critical protective functions in preeclamptic pregnancies. Thus, further studies on the roles of sFlt-1 in normal and preeclamptic pregnancies are warranted for the development of therapeutic strategies targeting VEGF signaling for the treatment of PE. Another impediment to the treatment of PE is the lack of suitable methods for delivery of cargo to placental cells, as PE is believed to be of placental origin and most available therapies for PE adversely impact both the mother and the fetus. The present review discusses the pathogenesis of PE, the complex role of sFlt-1 in maternal disease and fetal protection, and the recently developed placenta-targeted drug delivery system for the potential treatment of PE with candidate therapeutic agents. Full article
Show Figures

Figure 1

Back to TopTop