Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Ferrimicrobium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5840 KiB  
Review
Accumulated Copper Tailing Solid Wastes with Specific Compositions Encourage Advances in Microbial Leaching
by Juan Zhang, Xiaojun Liu, Xinyue Du, Xin Wang, Yifan Zeng and Shukai Fan
Minerals 2024, 14(10), 1051; https://doi.org/10.3390/min14101051 - 20 Oct 2024
Cited by 1 | Viewed by 3083
Abstract
Against the backdrop of the increasing copper demand in a low-carbon economy, this work statistically forecasted the distribution of China’s copper tailings for the first time, and then characterized them as finely crushed and low-grade mining solid wastes containing copper mainly in the [...] Read more.
Against the backdrop of the increasing copper demand in a low-carbon economy, this work statistically forecasted the distribution of China’s copper tailings for the first time, and then characterized them as finely crushed and low-grade mining solid wastes containing copper mainly in the form of chalcopyrite, bornite, covelline, enargite and chalcocite based on available research data. China is the globally leading refined copper producer and consumer, where the typical commercial-scale bioleaching of copper tailings is conducted in the Dexing, Zijinshan and Jinchuan mining regions. And these leaching processes were compared in this study. Widely used chemolithoautotrophic and mesophilic bacteria are Acidithiobacillus, Leptospirillum, Acidiphilium, Alicyclobacillus and Thiobacillus with varied metal resistance. They can be used to treat copper sulfide tailings such as pyrite, chalcopyrite, enargite, chalcocite, bornite and covellite under sufficient dissolved oxygen from 1.5 to 4.1 mg/L and pH values ranging from 0.5 to 7.2. Moderate thermophiles (Acidithiobacillus caldus, Acidimicrobium, Acidiplasma, Ferroplasma and Sulfobacillus) and extreme thermophilic archaea (Acidianus, Metallosphaera, Sulfurococcus and Sulfolobus) are dominant in leaching systems with operating temperatures higher than 40 °C. However, these species are vulnerable to high pulp density and heavy metals. Heterotrophic Acidiphilium multivorum, Ferrimicrobium, Thermoplasma and fungi use organic carbon as energy to treat copper oxides (malachite, chrysocolla and azurite) and weathered sulfides (bornite, chalcocite, digenite and covellite) under a wide pH range and high pulp density. We also compared autotrophs in a planktonic state or biofilm to treat different metal sulfides using various sulfur-cycling enzymes involved in the polysulfide or thiosulfate pathways against fungi that produce various organic acids to chelate copper from oxides. Finally, we recommended a bioinformatic analysis of functional genes involved in Fe/S oxidization and C/N metabolism, as well as advanced representation that can create new possibilities for the development of high-efficiency leaching microorganisms and insight into the mechanisms of bioleaching desired metals from complex and low-grade copper tailings. Full article
Show Figures

Figure 1

16 pages, 4026 KiB  
Article
A Metagenome from a Steam Vent in Los Azufres Geothermal Field Shows an Abundance of Thermoplasmatales archaea and Bacteria from the Phyla Actinomycetota and Pseudomonadota
by Roberto Marín-Paredes, Hermes H. Bolívar-Torres, Alberto Coronel-Gaytán, Esperanza Martínez-Romero and Luis E. Servín-Garcidueñas
Curr. Issues Mol. Biol. 2023, 45(7), 5849-5864; https://doi.org/10.3390/cimb45070370 - 13 Jul 2023
Cited by 1 | Viewed by 2455
Abstract
Los Azufres National Park is a geothermal field that has a wide number of thermal manifestations; nevertheless, the microbial communities in many of these environments remain unknown. In this study, a metagenome from a sediment sample from Los Azufres National Park was sequenced. [...] Read more.
Los Azufres National Park is a geothermal field that has a wide number of thermal manifestations; nevertheless, the microbial communities in many of these environments remain unknown. In this study, a metagenome from a sediment sample from Los Azufres National Park was sequenced. In this metagenome, we found that the microbial diversity corresponds to bacteria (Actinomycetota, Pseudomonadota), archaea (Thermoplasmatales and Candidatus Micrarchaeota and Candidatus Parvarchaeota), eukarya (Cyanidiaceae), and viruses (Fussellovirus and Caudoviricetes). The functional annotation showed genes related to the carbon fixation pathway, sulfur metabolism, genes involved in heat and cold shock, and heavy-metal resistance. From the sediment, it was possible to recover two metagenome-assembled genomes from Ferrimicrobium and Cuniculiplasma. Our results showed that there are a large number of microorganisms in Los Azufres that deserve to be studied. Full article
(This article belongs to the Collection Feature Papers in Current Issues in Molecular Biology)
Show Figures

Figure 1

Back to TopTop