Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = FIMP dark matter candidates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1438 KiB  
Article
FIMP Dark Matter in Bulk Viscous Non-Standard Cosmologies
by Esteban González, Carlos Maldonado, N. Stefanía Mite and Rodrigo Salinas
Symmetry 2025, 17(5), 731; https://doi.org/10.3390/sym17050731 - 9 May 2025
Cited by 1 | Viewed by 383
Abstract
In this paper, we revisit the extension of the classical non-standard cosmological model in which dissipative processes are considered through a bulk viscous term in the new field ϕ, which interacts with the radiation component during the early universe. Specifically, we consider [...] Read more.
In this paper, we revisit the extension of the classical non-standard cosmological model in which dissipative processes are considered through a bulk viscous term in the new field ϕ, which interacts with the radiation component during the early universe. Specifically, we consider an interaction term of the form Γϕρϕ, where Γϕ represents the decay rate of the field and ρϕ denotes its energy density and a bulk viscosity described by ξ=ξ0ρϕ1/2, within the framework of Eckart’s theory. This extended non-standard cosmology is employed to explore the parameter space for the production of Feebly Interacting Massive Particles (FIMPs) as Dark Matter candidates, assuming a constant thermal averaged Dark Matter production cross-section (σv), as well as a preliminary analysis of the non-constant case. In particular, for certain combinations of the model and Dark Matter parameters, namely (Tend,κ) and (mχ,σv), where Tend corresponds to the temperature at which ϕ decays, κ is the ratio between the initial energy density of ϕ and radiation, and mχ is the Dark Matter mass, we identify extensive new parameter regions where Dark Matter can be successfully established while reproducing the currently observed relic density, in contrast to the predictions of ΛCDM and classical non-standard cosmological scenarios. Full article
(This article belongs to the Special Issue Matter and Antimatter Asymmetry in Cosmology and Particle Physics)
Show Figures

Figure 1

Back to TopTop