Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = FIG-Elman network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2097 KiB  
Article
Research on Short-Term Wind Power Forecasting by Data Mining on Historical Wind Resource
by Bin Tang, Yan Chen, Qin Chen and Mengxing Su
Appl. Sci. 2020, 10(4), 1295; https://doi.org/10.3390/app10041295 - 14 Feb 2020
Cited by 11 | Viewed by 2559
Abstract
In order to enhance the accuracy of short-term wind power forecasting (WPF), a short-term wind power forecasting method based on historical wind resources by data mining has been designed. Firstly, the spoiled data resulting from wind turbine and meteorological monitoring equipment is eliminated, [...] Read more.
In order to enhance the accuracy of short-term wind power forecasting (WPF), a short-term wind power forecasting method based on historical wind resources by data mining has been designed. Firstly, the spoiled data resulting from wind turbine and meteorological monitoring equipment is eliminated, and the missing data is added by the Lomnaofski optimization model, which is based on the temporal-spatial correlation of meteorological data. Secondly, the wind characteristics are analyzed by the continuous time similarity clustering (CTSC) method, which is used to select similar samples. To improve the accuracy of deterministic prediction and prediction error, the radial basis function neural network (RBF) deterministic forecasting model was built, which can approximate nonlinear solutions. In addition, the wind power interval prediction method, combining fuzzy information granulation and an Elman neural network (FIG-Elman), is proposed to acquire forecasting intervals. The deterministic prediction of the RBF-CTSC model has high accuracy, which can accurately describe the randomness, fluctuation and nonlinear characteristics of wind speed. Additionally, the mean absolute error (MAE) and root mean square error (RMSE) are reduced by the new model. The interval prediction of FIG-Elman results show that the interval width decreased by 18.85%, and the coverage probability of interval increased by 10.94%. Full article
(This article belongs to the Special Issue Machine Learning for Energy Forecasting)
Show Figures

Figure 1

Back to TopTop