Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = ExoMars 2020

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6011 KiB  
Article
“MicroMED” Optical Particle Counter: From Design to Flight Model
by Diego Scaccabarozzi, Bortolino Saggin, Riccardo Somaschini, Marianna Magni, Pietro Valnegri, Francesca Esposito, Cesare Molfese, Fabio Cozzolino and Giuseppe Mongelluzzo
Sensors 2020, 20(3), 611; https://doi.org/10.3390/s20030611 - 22 Jan 2020
Cited by 14 | Viewed by 3777
Abstract
MicroMED (Micro Martian Environmental Dust Systematic Analyzer (MEDUSA)) instrument was selected for the ExoMars 2020 mission to study the airborne dust on the red planet through in situ measurements of the size distribution and concentration. This characterization has never been done before and [...] Read more.
MicroMED (Micro Martian Environmental Dust Systematic Analyzer (MEDUSA)) instrument was selected for the ExoMars 2020 mission to study the airborne dust on the red planet through in situ measurements of the size distribution and concentration. This characterization has never been done before and would have a strong impact on the understanding of Martian climate and Aeolian processes on Mars. The MicroMED is an optical particle counter that exploits the measured intensity of light scattered by dust particles when crossing a collimated laser beam. The measurement technique is well established for laboratory and ground applications but in order to be mounted on the Dust Suite payload within the framework of ExoMars 2020 mission, the instrument must be compatible with harsh mechanical and thermal environments and the tight mass budget of the mission payload. This work summarizes the thermo-mechanical design of the instrument, the manufacturing of the flight model and its successful qualification in expected thermal and mechanical environments. Full article
Show Figures

Figure 1

14 pages, 4069 KiB  
Article
Design and CFD Analysis of the Fluid Dynamic Sampling System of the “MicroMED” Optical Particle Counter
by Giuseppe Mongelluzzo, Francesca Esposito, Fabio Cozzolino, Gabriele Franzese, Alan Cosimo Ruggeri, Carmen Porto, Cesare Molfese, Diego Scaccabarozzi and Bortolino Saggin
Sensors 2019, 19(22), 5037; https://doi.org/10.3390/s19225037 - 19 Nov 2019
Cited by 18 | Viewed by 3306
Abstract
MicroMED is an optical particle counter that will be part of the ExoMars 2020 mission. Its goal is to provide the first ever in situ measurements of both size distribution and concentration of airborne Martian dust. The instrument samples Martian air, and it [...] Read more.
MicroMED is an optical particle counter that will be part of the ExoMars 2020 mission. Its goal is to provide the first ever in situ measurements of both size distribution and concentration of airborne Martian dust. The instrument samples Martian air, and it is based on an optical system that illuminates the sucked fluid by means of a collimated laser beam and detects embedded dust particles through their scattered light. By analyzing the scattered light profile, it is possible to obtain information about the dust grain size and speed. To do that, MicroMED’s fluid dynamic design should allow dust grains to cross the laser-illuminated sensing volume. The instrument’s Elegant Breadboard was previously developed and tested, and Computational Fluid Dynamic (CFD) analysis enabled determining its criticalities. The present work describes how the design criticalities were solved by means of a CFD simulation campaign. At the same time, it was possible to experimentally validate the results of the analysis. The updated design was then implemented to MicroMED’s Flight Model. Full article
Show Figures

Figure 1

21 pages, 3424 KiB  
Article
Choosing the Best Locomotion Mode in Reconfigurable Rovers
by Carlos Jesús Pérez del Pulgar Mancebo, Pablo Romeo Manrique, Gonzalo Jesús Paz Delgado, José Ricardo Sánchez Ibáñez and Martin Azkarate
Electronics 2019, 8(7), 818; https://doi.org/10.3390/electronics8070818 - 22 Jul 2019
Cited by 4 | Viewed by 6093
Abstract
The use of autonomous rovers for planetary exploration is crucial to traverse long distances and perform new discoveries on other planets. One of the most important issues is related to the interaction between the rover wheel and terrain, which would help to save [...] Read more.
The use of autonomous rovers for planetary exploration is crucial to traverse long distances and perform new discoveries on other planets. One of the most important issues is related to the interaction between the rover wheel and terrain, which would help to save energy and even avoid getting entrapped. The use of reconfigurable rovers with different locomotion modes has demonstrated improvement of traction and energy consumption. Therefore, the objective of this paper is to determine the best locomotion mode during the rover traverse, based on simple parameters, which would be obtained from propioceptive sensors. For this purpose, interaction of different terrains have been modelled and analysed with the ExoTeR, a scale prototype rover of the European ExoMars 2020 mission. This rover is able to perform, among others, the wheel walking locomotion mode, which has been demonstrated to improve traction in different situations. Currently, it is difficult to decide the instant time the rover has to switch from this locomotion mode to another. This paper also proposes a novel method to estimate the slip ratio, useful for deciding the best locomotion mode. Finally, results are obtained from an immersive simulation environment. It shows how each locomotion mode is suitable for different terrains and slopes and the proposed method is able to estimate the slip ratio. Full article
(This article belongs to the Special Issue Motion Planning and Control for Robotics)
Show Figures

Figure 1

13 pages, 4296 KiB  
Article
Insights of the Qualified ExoMars Laser and Mechanical Considerations of Its Assembly Process
by Pol Ribes-Pleguezuelo, Denis Guilhot, Marta Gilaberte Basset, Erik Beckert, Ramona Eberhardt and Andreas Tünnermann
Instruments 2019, 3(2), 25; https://doi.org/10.3390/instruments3020025 - 19 Apr 2019
Cited by 10 | Viewed by 5783
Abstract
1960 is the birth year of both the laser and the Mars exploration missions. Eleven years passed before the first successful landing on Mars, and another six before the first rover could explore the planet’s surface. In 2011, both technologies were reunited with [...] Read more.
1960 is the birth year of both the laser and the Mars exploration missions. Eleven years passed before the first successful landing on Mars, and another six before the first rover could explore the planet’s surface. In 2011, both technologies were reunited with the first laser landing on Mars as part of the ChemCam instrument, integrated inside the Curiosity Rover. In 2020, two more rovers with integrated lasers are expected to land on Mars: one through the National Aeronautics and Space Administration (NASA) Mars 2020 mission and another through the European Space Agency (ESA) ExoMars mission. The ExoMars mission laser is one of the components of the Raman Spectrometer instrument, which the Aerospace Technology National Institute of Spain (INTA) is responsible for. It uses as its excitation source a laser designed by Monocrom and manufactured in collaboration with the Fraunhofer Institute for Applied Optics and Precision Engineering (IOF). In this paper, we present for the first time the final flight module laser that has been installed in the rover’s onboard laboratory and validated to be shipped to Mars in 2020. Particular emphasis is given to mechanical considerations and assembly procedures, as the ExoMars laser assembly has required soldering techniques in contrast to the standard adhesive technologies used for most laser assembly processes in order to fulfill the environmental and optical requirements of the mission. Full article
(This article belongs to the Special Issue Photonic Devices Instrumentation and Applications)
Show Figures

Figure 1

17 pages, 17632 KiB  
Article
Distribution and Morphologies of Transverse Aeolian Ridges in ExoMars 2020 Rover Landing Site
by Anshuman Bhardwaj, Lydia Sam, F. Javier Martin-Torres and Maria-Paz Zorzano
Remote Sens. 2019, 11(8), 912; https://doi.org/10.3390/rs11080912 - 15 Apr 2019
Cited by 14 | Viewed by 5632
Abstract
Aeolian processes are believed to play a major role in the landscape evolution of Mars. Investigations on Martian aeolian landforms such as ripples, transverse aeolian ridges (TARs), and dunes, and aeolian sediment flux measurements are important to enhance our understanding of past and [...] Read more.
Aeolian processes are believed to play a major role in the landscape evolution of Mars. Investigations on Martian aeolian landforms such as ripples, transverse aeolian ridges (TARs), and dunes, and aeolian sediment flux measurements are important to enhance our understanding of past and present wind regimes, the ongoing dust cycle, landscape evolution, and geochemistry. These aeolian bedforms are often comprised of loose sand and sharply undulating topography and thus pose a threat to mobility and maneuvers of Mars rovers. Here we present a first-hand account of the distribution, morphologies, and morphometrics of TARs in Oxia Planum, the recently selected ExoMars 2020 Rover landing site. The gridded mapping was performed for contiguous stretches of TARs within all the landing ellipses using 57 sub-meter high resolution imaging science experiment (HiRISE) scenes. We also provide the morphological descriptions for all types of TARs present within the landing ellipses. We use HiRISE digital terrain models (DTMs) along with the images to derive morphometric information for TARs in Oxia Planum. In general, the average areal TAR coverage was found to be 5.4% (±4.9% standard deviation), increasing from west to east within the landing ellipses. We report the average TAR morphometrics in the form of crest–ridge width (131.1 ± 106.2 m), down-wind TAR length (17.6 ± 10.1 m), wavelength (37.3 ± 11.6 m), plan view aspect ratio (7.1 ± 2.3), inter-bedform spacing (2.1 ± 1.1), slope (10.6° ± 6.1°), predominant orientations (NE-SW and E-W), and height (1.2 ± 0.8 m). While simple TARs are predominant, we report other TAR morphologies such as forked TAR, wavy TAR with associated smaller secondary ripples, barchan-like TAR, networked TAR, and mini-TARs from the region. Our results can help in planning the rover traverses in terms of both safe passage and scientific returns favoring aeolian research, particularly improving our understanding of TARs. Full article
(This article belongs to the Special Issue Remote Sensing in Support of Aeolian Research)
Show Figures

Graphical abstract

Back to TopTop