Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Exechiopsis sp.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 527 KiB  
Article
Ectomycota Associated with Arthropods from Bat Hibernacula in Eastern Canada, with Particular Reference to Pseudogymnoascus destructans
by Karen J. Vanderwolf, David Malloch and Donald F. McAlpine
Insects 2016, 7(2), 16; https://doi.org/10.3390/insects7020016 - 22 Apr 2016
Cited by 19 | Viewed by 5601
Abstract
The introduction of Pseudogymnoascus destructans (Pd) to North America, agent of white-nose syndrome in hibernating bats, has increased interest in fungi from underground habitats. While bats are assumed to be the main vector transmitting Pd cave-to-cave, the role of other fauna [...] Read more.
The introduction of Pseudogymnoascus destructans (Pd) to North America, agent of white-nose syndrome in hibernating bats, has increased interest in fungi from underground habitats. While bats are assumed to be the main vector transmitting Pd cave-to-cave, the role of other fauna is unexplored. We documented the fungi associated with over-wintering arthropods in Pd-positive hibernacula, including sites where bats had been recently extirpated or near-extirpated, to determine if arthropods carried Pd, and to compare fungal assemblages on arthropods to bats. We isolated 87 fungal taxa in 64 genera from arthropods. Viable Pd was cultured from 15.3% of arthropods, most frequently from harvestmen (Nelima elegans). Fungal assemblages on arthropods were similar to those on bats. The different fungal assemblages documented among arthropods may be due to divergent patterns of movement, aggregation, feeding, or other factors. While it is unlikely that arthropods play a major role in the transmission dynamics of Pd, we demonstrate that arthropods may carry viable Pd spores and therefore have the potential to transport Pd, either naturally or anthropogenically, within or among hibernacula. This underlines the need for those entering hibernacula to observe decontamination procedures and for such procedures to evolve as our understanding of potential mechanisms of Pd dispersal improve. Full article
Show Figures

Figure 1

Back to TopTop