Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Euphorbia abyssinica

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3424 KiB  
Article
Digalloyl Glycoside: A Potential Inhibitor of Trypanosomal PFK from Euphorbia abyssinica J.F. Gmel
by Seham S. El-Hawary, Rabab Mohammed, Nadia M. Lithy, Sameh Fekry AbouZid, Mostafa A. Mansour, Suliman A. Almahmoud, Bader Huwaimel and Elham Amin
Plants 2022, 11(2), 173; https://doi.org/10.3390/plants11020173 - 10 Jan 2022
Cited by 9 | Viewed by 2926
Abstract
Human African trypanosomiasis is an endemic infectious disease caused by Trypanosoma brucei via the bite of tsetse-fly. Most of the drugs used for the treatment, e.g., Suramin, have shown several problems, including the high level of toxicity. Accordingly, the discovery of anti-trypanosomal drugs [...] Read more.
Human African trypanosomiasis is an endemic infectious disease caused by Trypanosoma brucei via the bite of tsetse-fly. Most of the drugs used for the treatment, e.g., Suramin, have shown several problems, including the high level of toxicity. Accordingly, the discovery of anti-trypanosomal drugs from natural sources has become an urgent requirement. In our previous study on the anti-trypanosomal potential of Euphorbia species, Euphorbia abyssinica displayed significant anti-trypanosomal activity. Therefore, a phytochemical investigation of the methanolic extract of E. abyssinica was carried out. Twelve compounds, including two triterpenes (1, 2); one sterol-glucoside (4); three ellagic acid derivatives (3, 9, 11); three gallic acid derivatives (5, 6, 10); and three flavonoids (7, 8, 12), were isolated. The structures of isolated compounds were determined through different spectroscopic techniques. Compound (10) was obtained for the first time from genus Euphorbia while all other compounds except compound (4), were firstly reported in E. abyssinica. Consequently, an in silico study was used to estimate the anti-trypanosomal activity of the isolated compounds. Several compounds displayed interesting activity where 1,6-di-O-galloyl-d-glucose (10) appeared as the most potent inhibitor of trypanosomal phosphofructokinase (PFK). Moreover, molecular dynamics (MD) simulations and ADMET calculations were performed for 1,6-di-O-galloyl-d-glucose. In conclusion, 1,6-di-O-galloyl-d-glucose revealed high binding free energy as well as desirable molecular dynamics and pharmacokinetic properties; therefore, it could be suggested for further in vitro and in vivo studies for trypanosomiasis. Full article
(This article belongs to the Special Issue Research of Bioactive Substances in Plant Extracts)
Show Figures

Figure 1

14 pages, 335 KiB  
Review
Ethnobotany, Ethnopharmacology, and Phytochemistry of Medicinal Plants Used for Treating Human Diarrheal Cases in Rwanda: A Review
by Noel Gahamanyi, Emmanuel Munyaneza, Emmanuel Dukuzimana, Naasson Tuyiringire, Cheol-Ho Pan and Erick V. G. Komba
Antibiotics 2021, 10(10), 1231; https://doi.org/10.3390/antibiotics10101231 - 9 Oct 2021
Cited by 23 | Viewed by 5580
Abstract
Diarrhea, often caused by microorganisms, has been associated with high morbidity and mortality in Africa. Increased rates of antimicrobial-resistant pathogens have reignited the quest for alternative therapies. This review aimed at identifying medicinal plants used in the treatment of human diarrheal cases in [...] Read more.
Diarrhea, often caused by microorganisms, has been associated with high morbidity and mortality in Africa. Increased rates of antimicrobial-resistant pathogens have reignited the quest for alternative therapies. This review aimed at identifying medicinal plants used in the treatment of human diarrheal cases in Rwanda and analyzing their ethnobotany, ethnopharmacology, and phytochemistry. We searched PubMed/Medline, Google Scholar, ScienceDirect, and the Web of Science for published articles on medicinal plants used to treat diarrhea in Rwanda. Additionally, specialized herbarium documents of different institutes were reviewed. Articles were assessed for relevance, quality, and taxonomical accuracy before being included in this review. Overall, 63 species of medicinal plants belonging to 35 families were recorded. Asteraceae was the predominant family with six species, followed by Fabaceae and Lamiaceae, with five species each. The most reported species with anti-diarrheal properties were Vernonia amygdalina Delile, Tetradenia riparia (Hochst.) Codd, Clerodendrum myricoides R. Br. and Chenopodium ugandae (Aellen) Aellen. Leaves (66.7%) and roots (17.5%) were the commonly used plant parts in the preparation of medicine. Phytochemicals from medicinal plants with antidiarrheic activities were sesquiterpene lactones (V. amygdalina); terpene, sterols, saponosides, and flavonoids (C. ugandae); saponins and tannins (T. riparia); and tannins, flavonoids, and alkaloids (C. myricoides). Six studies tested the antimicrobial activities of the plants against bacteria and viruses known to cause diarrhea. Erythrina abyssinica, Euphorbia tirucalli, Dracaena afromontana, and Ficus thonningii are socio-culturally important. Further research on toxicity and posology is needed to ensure the safety of medicinal plants. Full article
(This article belongs to the Special Issue Alternative Approaches to Treating Antimicrobial Resistant Infections)
Back to TopTop