Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = EGS Collab

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 17189 KB  
Article
New Pump-In Flowback Model Verification with In-Situ Strain Measurements and Numerical Simulation
by Ibrahim Eltaleb and Mohamed Y. Soliman
Energies 2023, 16(4), 1970; https://doi.org/10.3390/en16041970 - 16 Feb 2023
Cited by 1 | Viewed by 2237
Abstract
This study presents an analytical model for estimating minimum horizontal stress in hydraulic fracturing stimulations. The conventional Diagnostic Fracture Injection Test (DFIT) is not practical in ultra-tight formations, leading to the need for pump-in/flowback tests. However, ambiguities in the results of these tests [...] Read more.
This study presents an analytical model for estimating minimum horizontal stress in hydraulic fracturing stimulations. The conventional Diagnostic Fracture Injection Test (DFIT) is not practical in ultra-tight formations, leading to the need for pump-in/flowback tests. However, ambiguities in the results of these tests have limited their application. The proposed model is based on the linear diffusivity equation and material balance, which is analytically solved and verified using a commercially available numerical simulator. The model generates a linear graph in which the pressure drop and its derivative are plotted versus the developed solution time function. The closure pressure is determined when the slope of the derivative deviates from linearity. The model was applied to several cycles of field flowback tests and found to eliminate the ambiguity associated with identifying the fracture closure. Furthermore, the minimum In-situ stresses estimated using this approach are verified via downhole strain measurement and synthetic data from a fully 3D commercial fracturing simulator. The proposed technique outperformed other conventional methods in analyzing challenging injection/shut-in tests, showing improved results and reducing uncertainty in estimated fracture parameters. This model is expected to scale down the need for multiple field trials and provide a reliable estimation of minimum stress. Full article
Show Figures

Figure 1

30 pages, 12572 KB  
Article
Coupled Thermo–Hydro–Mechanical–Seismic Modeling of EGS Collab Experiment 1
by Jianrong Lu and Ahmad Ghassemi
Energies 2021, 14(2), 446; https://doi.org/10.3390/en14020446 - 15 Jan 2021
Cited by 14 | Viewed by 3478
Abstract
An important technical issue in the enhanced geothermal system (EGS) is the process of fracture shear and dilation, fracture network propagation and induced seismicity. EGS development requires an ability to reliably predict the fracture network’s permeability evolution. Laboratory and field studies such as [...] Read more.
An important technical issue in the enhanced geothermal system (EGS) is the process of fracture shear and dilation, fracture network propagation and induced seismicity. EGS development requires an ability to reliably predict the fracture network’s permeability evolution. Laboratory and field studies such as EGS Collab and Utah FORGE, and modeling simulations provide valuable lessons for successful commercial EGS design. In this work we present a modeling analysis of EGS Collab Testbed Experiment 1 (May 24, Stim-II ≅ 164 Notch) and interpret the stimulation results in relation to the creation of a fracture network. In doing so, we use an improved 3D discrete fracture network model coupled with a 3D thermo-poroelastic finite element model (FEM) which can consider fracture network evolution and induced seismicity. A dual-scale semi-deterministic fracture network is generated by combining data from image logs, foliations/micro-fractures, and core. The natural fracture properties (e.g., length and asperity) follow a stochastic distribution. The fracture network propagation under injection is considered by an ultrafast analytical approach. This coupled method allows for multiple seismic events to occur on and around a natural fracture. The uncertainties of seismic event clouds are better constrained using the energy conservation law. Numerical simulations show that the simulated fracture pressure profiles reasonably follow the trend observed in the field test. The simulations support the concept that a natural fracture was propagated from the injection well connecting with the production well via intersection and coalescence with other natural fractures consistent with plausible flow paths observed on the field. The fracture propagation profiles from numerical modeling generally match the field observation. The distribution of simulated micro-seismicity have good agreement with the field-observed data. Full article
(This article belongs to the Special Issue Modelings and Analysis of Hydraulic Fracturing in Reservoirs)
Show Figures

Figure 1

Back to TopTop