Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Dynamic Modality Dropout and Threshold Masking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7532 KB  
Article
Real-Time Aerial Multispectral Object Detection with Dynamic Modality-Balanced Pixel-Level Fusion
by Zhe Wang and Qingling Zhang
Sensors 2025, 25(10), 3039; https://doi.org/10.3390/s25103039 - 12 May 2025
Cited by 1 | Viewed by 1708
Abstract
Aerial object detection plays a critical role in numerous fields, utilizing the flexibility of airborne platforms to achieve real-time tasks. Combining visible and infrared sensors can overcome limitations under low-light conditions, enabling full-time tasks. While feature-level fusion methods exhibit comparable performances in visible–infrared [...] Read more.
Aerial object detection plays a critical role in numerous fields, utilizing the flexibility of airborne platforms to achieve real-time tasks. Combining visible and infrared sensors can overcome limitations under low-light conditions, enabling full-time tasks. While feature-level fusion methods exhibit comparable performances in visible–infrared multispectral object detection, they suffer from heavy model size, inadequate inference speed and visible light preferences caused by inherent modality imbalance, limiting their applications in airborne platform deployment. To address these challenges, this paper proposes a YOLO-based real-time multispectral fusion framework combining pixel-level fusion with dynamic modality-balanced augmentation called Full-time Multispectral Pixel-wise Fusion Network (FMPFNet). Firstly, we introduce the Multispectral Luminance Weighted Fusion (MLWF) module consisting of attention-based modality reconstruction and feature fusion. By leveraging YUV color space transformation, this module efficiently fuses RGB and IR modalities while minimizing computational overhead. We also propose the Dynamic Modality Dropout and Threshold Masking (DMDTM) strategy, which balances modality attention and improves detection performance in low-light scenarios. Additionally, we refine our model to enhance the detection of small rotated objects, a requirement commonly encountered in aerial detection applications. Experimental results on the DroneVehicle dataset demonstrate that our FMPFNet achieves 76.80% mAP50 and 132 FPS, outperforming state-of-the-art feature-level fusion methods in both accuracy and inference speed. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

Back to TopTop