Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Doppler beam sharpening (DBS) image

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 121478 KiB  
Article
Ground-Moving Target Relocation for a Lightweight Unmanned Aerial Vehicle-Borne Radar System Based on Doppler Beam Sharpening Image Registration
by Wencheng Liu, Zhen Chen, Zhiyu Jiang, Yanlei Li, Yunlong Liu, Xiangxi Bu and Xingdong Liang
Electronics 2025, 14(9), 1760; https://doi.org/10.3390/electronics14091760 - 25 Apr 2025
Viewed by 368
Abstract
With the rapid development of lightweight unmanned aerial vehicles (UAVs), the combination of UAVs and ground-moving target indication (GMTI) radar systems has received great interest. However, because of size, weight, and power (SWaP) limitations, the UAV may not be able to equip a [...] Read more.
With the rapid development of lightweight unmanned aerial vehicles (UAVs), the combination of UAVs and ground-moving target indication (GMTI) radar systems has received great interest. However, because of size, weight, and power (SWaP) limitations, the UAV may not be able to equip a highly accurate inertial navigation system (INS), which leads to reduced accuracy in the moving target relocation. To solve this issue, we propose using an image registration algorithm, which matches a Doppler beam sharpening (DBS) image of detected moving targets to a synthetic aperture radar (SAR) image containing coordinate information. However, when using conventional SAR image registration algorithms such as the SAR scale-invariant feature transform (SIFT) algorithm, additional difficulties arise. To overcome these difficulties, we developed a new image-matching algorithm, which first estimates the errors of the UAV platform to compensate for geometric distortions in the DBS image. In addition, to showcase the relocation improvement achieved with the new algorithm, we compared it with the affine transformation and second-order polynomial algorithms. The findings of simulated and real-world experiments demonstrate that our proposed image transformation method offers better moving target relocation results under low-accuracy INS conditions. Full article
(This article belongs to the Special Issue New Challenges in Remote Sensing Image Processing)
Show Figures

Figure 1

17 pages, 9885 KiB  
Article
Knowledge-Aided Doppler Beam Sharpening Super-Resolution Imaging by Exploiting the Spatial Continuity Information
by Hongmeng Chen, Zeyu Wang, Jing Liu, Xiaoli Yi, Hanwei Sun, Heqiang Mu, Ming Li and Yaobing Lu
Sensors 2019, 19(8), 1920; https://doi.org/10.3390/s19081920 - 23 Apr 2019
Cited by 2 | Viewed by 4467
Abstract
This paper deals with the problem of high cross-range resolution Doppler beam sharpening (DBS) imaging for airborne wide-area surveillance (WAS) radar under short dwell time situations. A knowledge-aided DBS (KA-DBS) imaging algorithm is proposed. In the proposed KA-DBS framework, the DBS imaging model [...] Read more.
This paper deals with the problem of high cross-range resolution Doppler beam sharpening (DBS) imaging for airborne wide-area surveillance (WAS) radar under short dwell time situations. A knowledge-aided DBS (KA-DBS) imaging algorithm is proposed. In the proposed KA-DBS framework, the DBS imaging model for WAS radar is constructed and the cross-range resolution is analyzed. Since the radar illuminates the imaging scene continuously through the scanning movement of the antenna, there is strong spatial coherence between adjacent pulses. Based on this fact, forward and backward pulse information can be predicted, and the equivalent number of pulses in each coherent processing interval (CPI) will be doubled based on the autoregressive (AR) technique by taking advantage of the spatial continuity property of echoes. Finally, the predicted forward and backward pulses are utilized to merge with the initial pulses, then the newly merged pulses in each CPI are utilized to perform the DBS imaging. Since the number of newly merged pulses in KA-DBS is twice larger than that in the conventional DBS algorithm with the same dwell time, the cross-range resolution in the proposed KA-DBS algorithm can be improved by a factor of two. The imaging performance assessment conducted by resorting to real airborne data set, has verified the effectiveness of the proposed algorithm. Full article
(This article belongs to the Special Issue Synthetic Aperture Radar (SAR) Techniques and Applications)
Show Figures

Figure 1

Back to TopTop