Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Diospyros discolor (Willd.)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 896 KiB  
Article
Molecular Affinity of Mabolo Extracts to an Octopamine Receptor of a Fruit Fly
by Francoise Neil D. Dacanay, Ma. Carmina Joyce A. Ladra, Hiyas A. Junio and Ricky B. Nellas
Molecules 2017, 22(10), 1677; https://doi.org/10.3390/molecules22101677 - 24 Oct 2017
Cited by 12 | Viewed by 10221
Abstract
Essential oils extracted from plants are composed of volatile organic compounds that can affect insect behavior. Identifying the active components of the essential oils to their biochemical target is necessary to design novel biopesticides. In this study, essential oils extracted from Diospyros discolor [...] Read more.
Essential oils extracted from plants are composed of volatile organic compounds that can affect insect behavior. Identifying the active components of the essential oils to their biochemical target is necessary to design novel biopesticides. In this study, essential oils extracted from Diospyros discolor (Willd.) were analyzed using gas chromatography mass spectroscopy (GC-MS) to create an untargeted metabolite profile. Subsequently, a conformational ensemble of the Drosophila melanogaster octopamine receptor in mushroom bodies (OAMB) was created from a molecular dynamics simulation to resemble a flexible receptor for docking studies. GC-MS analysis revealed the presence of several metabolites, i.e. mostly aromatic esters. Interestingly, these aromatic esters were found to exhibit relatively higher binding affinities to OAMB than the receptor’s natural agonist, octopamine. The molecular origin of this observed enhanced affinity is the π -stacking interaction between the aromatic moieties of the residues and ligands. This strategy, computational inspection in tandem with untargeted metabolomics, may provide insights in screening the essential oils as potential OAMB inhibitors. Full article
Show Figures

Graphical abstract

Back to TopTop