Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Dark Target—Lake Tahoe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
70 pages, 53631 KiB  
Article
Absolute Vicarious Calibration, Extended PICS (EPICS) Based De-Trending and Validation of Hyperspectral Hyperion, DESIS, and EMIT
by Harshitha Monali Adrija, Larry Leigh, Morakot Kaewmanee, Dinithi Siriwardana Pathiranage, Juliana Fajardo Rueda, David Aaron and Cibele Teixeira Pinto
Remote Sens. 2025, 17(7), 1301; https://doi.org/10.3390/rs17071301 - 5 Apr 2025
Cited by 1 | Viewed by 647
Abstract
This study addresses the critical need for radiometrically accurate and consistent hyperspectral data as the remote sensing community moves towards a hyperspectral world. Previous calibration efforts on Hyperion, the first on-orbit hyperspectral sensors, have exhibited temporal stability and absolute accuracy limitations. This work [...] Read more.
This study addresses the critical need for radiometrically accurate and consistent hyperspectral data as the remote sensing community moves towards a hyperspectral world. Previous calibration efforts on Hyperion, the first on-orbit hyperspectral sensors, have exhibited temporal stability and absolute accuracy limitations. This work has developed and validated a novel cross-calibration methodology to address these challenges. Also, this work adds two other hyperspectral sensors, DLR Earth Sensing Imaging Spectrometer (DESIS) and Earth Surface mineral Dust Source Investigation instrument (EMIT), to maintain temporal continuity and enhance spatial coverage along with spectral resolution. The study established a robust approach for calibrating Hyperion using DESIS and EMIT. The methodology involves several key processes. First is a temporal stability assessment on Extended Pseudo Invariant Calibration Sites (EPICS) Cluster13–Global Temporal Stable (GTS) over North Africa (Cluster13–GTS) using Landsat Sensors Landsat 7 (ETM+), Landsat 8 (OLI). Second, a temporal trend correction model was developed for DESIS and Hyperion using statistically selected models. Third, absolute calibration was developed for DESIS and EMIT using multiple vicarious calibration sites, resulting in an overall absolute calibration uncertainty of 2.7–5.4% across the DESIS spectrum and 3.1–6% on non-absorption bands for EMIT. Finally, Hyperion was cross-calibrated using calibrated DESIS and EMIT as reference (with traceability to ground reference) with a calibration uncertainty within the range of 7.9–12.9% across non-absorption bands. The study also validates these calibration coefficients using OLI over Cluster13–GTS. The validation provided results suggesting a statistical similarity between the absolute calibrated hyperspectral sensors mean TOA (top-of-atmosphere) reflectance with that of OLI. This study offers a valuable contribution to the community by fulfilling the above-mentioned needs, enabling more reliable intercomparison, and combining multiple hyperspectral datasets for various applications. Full article
Show Figures

Figure 1

Back to TopTop