Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = D/Yamagata/2019 lineage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2193 KiB  
Article
First Detection of Influenza D Virus Infection in Cattle and Pigs in the Republic of Korea
by Eui Hyeon Lim, Seong-In Lim, Min Ji Kim, MiJung Kwon, Min-Ji Kim, Kwan-Bok Lee, SeEun Choe, Dong-Jun An, Bang-Hun Hyun, Jee-Yong Park, You-Chan Bae, Hye-Young Jeoung, Kyung-Ki Lee and Yoon-Hee Lee
Microorganisms 2023, 11(7), 1751; https://doi.org/10.3390/microorganisms11071751 - 5 Jul 2023
Cited by 8 | Viewed by 3724
Abstract
Influenza D virus (IDV) belongs to the Orthomyxoviridae family, which also include the influenza A, B and C virus genera. IDV was first detected and isolated in 2011 in the United States from pigs with respiratory illness. IDV circulates in mammals, including pigs, [...] Read more.
Influenza D virus (IDV) belongs to the Orthomyxoviridae family, which also include the influenza A, B and C virus genera. IDV was first detected and isolated in 2011 in the United States from pigs with respiratory illness. IDV circulates in mammals, including pigs, cattle, camelids, horses and small ruminants. Despite the broad host range, cattle are thought to be the natural reservoir of IDV. This virus plays a role as a causative agent of the bovine respiratory disease complex (BRDC). IDV has been identified in North America, Europe, Asia and Africa. However, there has been no information on the presence of IDV in the Republic of Korea (ROK). In this study, we investigated the presence of viral RNA and seroprevalence to IDV among cattle and pigs in the ROK in 2022. Viral RNA was surveyed by the collection and testing of 999 cattle and 2391 pig nasal swabs and lung tissues using a real-time RT-PCR assay. IDV seroprevalence was investigated by testing 742 cattle and 1627 pig sera using a hemagglutination inhibition (HI) assay. The viral RNA positive rate was 1.4% in cattle, but no viral RNA was detected in pigs. Phylogenetic analysis of the hemagglutinin-esterase-fusion (HEF) gene was further conducted for a selection of samples. All sequences belonged to the D/Yamagata/2019 lineage. The seropositivity rates were 54.7% in cattle and 1.4% in pigs. The geometric mean of the antibody titer (GMT) was 68.3 in cattle and 48.5 in pigs. This is the first report on the detection of viral RNA and antibodies to IDV in the ROK. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

10 pages, 570 KiB  
Communication
Antiviral Susceptibilities of Distinct Lineages of Influenza C and D Viruses
by Emi Takashita, Shin Murakami, Yoko Matsuzaki, Seiichiro Fujisaki, Hiroko Morita, Shiho Nagata, Misa Katayama, Katsumi Mizuta, Hidekazu Nishimura, Shinji Watanabe, Taisuke Horimoto and Hideki Hasegawa
Viruses 2023, 15(1), 244; https://doi.org/10.3390/v15010244 - 15 Jan 2023
Cited by 7 | Viewed by 2593
Abstract
The emergence and spread of antiviral-resistant influenza viruses are of great concern. To minimize the public health risk, it is important to monitor antiviral susceptibilities of influenza viruses. Analyses of the antiviral susceptibilities of influenza A and B viruses have been conducted globally; [...] Read more.
The emergence and spread of antiviral-resistant influenza viruses are of great concern. To minimize the public health risk, it is important to monitor antiviral susceptibilities of influenza viruses. Analyses of the antiviral susceptibilities of influenza A and B viruses have been conducted globally; however, those of influenza C and D viruses are limited. Here, we determined the susceptibilities of influenza C viruses representing all six lineages (C/Taylor, C/Yamagata, C/Sao Paulo, C/Aichi, C/Kanagawa, and C/Mississippi) and influenza D viruses representing four lineages (D/OK, D/660, D/Yama2016, and D/Yama2019) to RNA polymerase inhibitors (baloxavir and favipiravir) by using a focus reduction assay. All viruses tested were susceptible to both drugs. We then performed a genetic analysis to check for amino acid substitutions associated with baloxavir and favipiravir resistance and found that none of the viruses tested possessed these substitutions. Use of the focus reduction assay with the genotypic assay has proven valuable for monitoring the antiviral susceptibilities of influenza C and D viruses as well as influenza A and B viruses. Antiviral susceptibility monitoring of all influenza virus types should continue in order to assess the public health risks posed by these viruses. Full article
(This article belongs to the Special Issue Non-A Influenza 3.0)
Show Figures

Figure 1

15 pages, 2646 KiB  
Article
The Molecular Epidemiology and Evolutionary Dynamics of Influenza B Virus in Two Italian Regions during 2010–2015: The Experience of Sicily and Liguria
by Fabio Tramuto, Andrea Orsi, Carmelo Massimo Maida, Claudio Costantino, Cecilia Trucchi, Cristiano Alicino, Francesco Vitale and Filippo Ansaldi
Int. J. Mol. Sci. 2016, 17(4), 549; https://doi.org/10.3390/ijms17040549 - 13 Apr 2016
Cited by 24 | Viewed by 5963
Abstract
Molecular epidemiology of influenza B virus remained poorly studied in Italy, despite representing a major contributor to seasonal epidemics. This study aimed to reconstruct the phylogenetic relationships and genetic diversity of the hemagglutinin gene sequences of 197 influenza B strains circulating in both [...] Read more.
Molecular epidemiology of influenza B virus remained poorly studied in Italy, despite representing a major contributor to seasonal epidemics. This study aimed to reconstruct the phylogenetic relationships and genetic diversity of the hemagglutinin gene sequences of 197 influenza B strains circulating in both Southern (Sicily) and Northern (Liguria) Italy between 2010 and 2015. Upper respiratory tract specimens of patients displaying symptoms of influenza-like illness were screened by real-time RT-PCR assay for the presence of influenza B virus. PCR-positive influenza B samples were further analyzed by sequencing. Neighbor-joining phylogenetic trees were constructed and the amino-acid alignments were analyzed. Phylogenetic analysis showed clusters in B/Victoria clade 1A/1B (n = 29, 14.7%), and B/Yamagata clades 2 (n = 112, 56.8%) and 3 (n = 56, 28.4%). Both influenza B lineages were found to co-circulate during the study period, although a lineage swap from B/Victoria to B/Yamagata occurred in Italy between January 2011 and January 2013. The most represented amino-acid substitutions were N116K in the 120-loop (83.9% of B/Yamagata clade 3 strains) and I146V in the 150-loop (89.6% of B/Victoria clade 1 strains). D197N in 190-helix was found in almost all viruses collected. Our findings provide further evidence to support the adoption of quadrivalent influenza vaccines in our country. Full article
Show Figures

Figure 1

Back to TopTop