Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Cymbopogan citratus fibre (CCF)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1970 KB  
Article
Effect of Cymbopogan citratus Fibre on Physical and Impact Properties of Thermoplastic Cassava Starch/Palm Wax Composites
by Zatil Hafila Kamaruddin, Ridhwan Jumaidin, Zatil Hazrati Kamaruddin, Muhammad Rizal Muhammad Asyraf, Muhammad Rizal Razman and Tabrej Khan
Polymers 2023, 15(10), 2364; https://doi.org/10.3390/polym15102364 - 18 May 2023
Cited by 17 | Viewed by 3177
Abstract
Cymbopogan citratus fibre (CCF) is an agricultural waste plant derived from a natural cellulosic source of fibre that can be used in various bio-material applications. This paper beneficially prepared thermoplastic cassava starch/palm wax blends incorporated with Cymbopogan citratus fibre (TCPS/PW/CCF) bio-composites at different [...] Read more.
Cymbopogan citratus fibre (CCF) is an agricultural waste plant derived from a natural cellulosic source of fibre that can be used in various bio-material applications. This paper beneficially prepared thermoplastic cassava starch/palm wax blends incorporated with Cymbopogan citratus fibre (TCPS/PW/CCF) bio-composites at different CCF concentrations of 0, 10, 20, 30, 40, 50 and 60 wt%. In contrast, palm wax loading remained constant at 5 wt% concentration using the hot moulding compression method. TCPS/PW/CCF bio-composites were characterised in the present paper via their physical and impact properties. The addition of CCF significantly improved impact strength by 50.65% until 50 wt% CCF loading. Furthermore, it was observed that the inclusion of CCF resulted in a little decrement in biocomposite solubility compared to neat TPCS/PW biocomposite from 28.68% to 16.76%. Water absorption showed higher water resistance in the composites incorporating 60 wt.% fibre loading. The TPCS/PW/CCF biocomposites with different fibre contents had 11.04–5.65% moisture content, which was lower than the control biocomposite. The thickness of all samples decreased gradually with increasing fibre content. Overall, these findings provide evidence that CCF waste can be utilised as a high-quality filler in biocomposites due to its diverse characteristics, including improving the properties of biocomposites and strengthening their structural integrity. Full article
Show Figures

Figure 1

19 pages, 5053 KB  
Article
Biocomposite of Cassava Starch-Cymbopogan Citratus Fibre: Mechanical, Thermal and Biodegradation Properties
by Zatil Hafila Kamaruddin, Ridhwan Jumaidin, Rushdan Ahmad Ilyas, Mohd Zulkefli Selamat, Roziela Hanim Alamjuri and Fahmi Asyadi Md Yusof
Polymers 2022, 14(3), 514; https://doi.org/10.3390/polym14030514 - 27 Jan 2022
Cited by 44 | Viewed by 5912
Abstract
Increasing environmental awareness and concern have shifted the focus of research and development towards biodegradable materials development. In the current study, Cymbopogan citratus fibre (CCF) were incorporated into thermoplastic cassava starch (TPCS) with various content of CCF (10, 20, 30, 40, 50, 60 [...] Read more.
Increasing environmental awareness and concern have shifted the focus of research and development towards biodegradable materials development. In the current study, Cymbopogan citratus fibre (CCF) were incorporated into thermoplastic cassava starch (TPCS) with various content of CCF (10, 20, 30, 40, 50, 60 wt.%) via compression moulding. The determination of fundamental characteristics of TPCS/CCF biopolymer composites was conducted to assess their potential as biodegradable reinforcements. Characterization of the samples was conducted via Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM), as well as mechanical, moisture absorption, and soil burial testings. The findings showed that the improved tensile and flexural features of the TPCS composites with CCF incorporation, with 50 wt.% CCF content yielded the maximum modulus and strength. The thermal properties of the biocomposite demonstrated that CCF addition improved the material’s thermal stability, as shown by a higher-onset decomposition temperature and ash content. Meanwhile, the CCF incorporation into TPCS slowed down the biodegradation of the composites. In term of morphological, homogeneous fibres and matrix dispersion with excellent adhesion was observed in morphological analyses using scanning electron microscopy (SEM), which is crucial for the enhancement of the mechanical performance of biocomposites. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

Back to TopTop