Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Cutaneotrichosporon dermatis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5793 KiB  
Article
Oral Microbiota and Inflammatory Bowel Diseases: Detection of Emerging Fungal Pathogens and Herpesvirus
by Manoel Marques Evangelista Oliveira, Letícia Bomfim Campos, Fernanda Brito, Flavia Martinez de Carvalho, Geraldo Oliveira Silva-Junior, Gisela Lara da Costa, Tatiane Nobre Pinto, Rafaela Moraes Pereira de Sousa, Rodrigo Miranda, Rodolfo Castro, Cyrla Zaltman and Vanessa Salete de Paula
Biomedicines 2025, 13(2), 480; https://doi.org/10.3390/biomedicines13020480 - 15 Feb 2025
Viewed by 1347
Abstract
Background/Objectives: Ulcerative colitis (UC) and Crohn’s disease (CD) are the usual clinical forms of inflammatory bowel disease (IBD). Changes in the oral microbiota, especially the presence of emerging fungi and herpesviruses, have been shown to worsen the clinical aspects of IBD. The aim [...] Read more.
Background/Objectives: Ulcerative colitis (UC) and Crohn’s disease (CD) are the usual clinical forms of inflammatory bowel disease (IBD). Changes in the oral microbiota, especially the presence of emerging fungi and herpesviruses, have been shown to worsen the clinical aspects of IBD. The aim of this study was to screen for emerging pathogens in the oral yeast microbiota and the presence of herpesvirus in IBD patients. Methods: Oral swabs of seven UC or CD patients were collected. The samples were plated on Sabouraud Dextrose Agar and subcultured on CHROMagar Candida and CHROMagar Candida Plus. Polyphasic taxonomy was applied and identified using molecular tools, such as MALDI-TOF MS and ITS partial sequencing. Multiplex qPCR was used to identify the herpesvirus. Results: The mean age was 38.67 ± 14.06 years, 57.14% were female, and two had diabetes. The CD patients presented with Rhodotorula mucilaginosa, Candida orthopsilosis and Kodamaea jinghongensis, while the UC patients presented with Cutaneotrichosporon dermatis, Candida glabrata, Candida lusitanea and Candida tropicalis. Two UC individuals had at least one herpesvirus. In the first individual, a co-detection of Herpes Simplex Virus 1 (HSV-1) and C. lusitaniae was observed. The second presented with co-infections of Epstein–Barr virus (EBV), Human Herpesvirus 7 (HHV-7) and C. tropicalis. Conclusions: We identified rarely described yeasts and co-infections in IBD patients, highlighting the need to identify emerging pathogens in the oral microbiota, as they may contribute to opportunistic infections. Full article
Show Figures

Figure 1

12 pages, 2992 KiB  
Article
Biodegradation of Tetracycline Antibiotics by the Yeast Strain Cutaneotrichosporon dermatis M503
by Hao Tan, Delong Kong, Qingyun Ma, Qingqing Li, Yiqing Zhou, Xu Jiang, Zhiye Wang, Rebecca E. Parales and Zhiyong Ruan
Microorganisms 2022, 10(3), 565; https://doi.org/10.3390/microorganisms10030565 - 5 Mar 2022
Cited by 21 | Viewed by 3603
Abstract
In this study, the Cutaneotrichosporon dermatis strain M503 was isolated and could efficiently degrade tetracycline, doxycycline, and chlorotetracyline. The characteristics of tetracycline degradation were investigated under a broad range of cultural conditions. Response surface methodology (RSM) predicted that the highest degradation rate of [...] Read more.
In this study, the Cutaneotrichosporon dermatis strain M503 was isolated and could efficiently degrade tetracycline, doxycycline, and chlorotetracyline. The characteristics of tetracycline degradation were investigated under a broad range of cultural conditions. Response surface methodology (RSM) predicted that the highest degradation rate of tetracycline could be obtained under the following conditions: 39.69 °C, pH of 8.79, and inoculum dose of 4.0% (v/v, ~3.5 × 106 cells/mL in the medium). In accordance with the five identified degradation products of tetracycline, two putative degradation pathways, which included the shedding of methyl and amino groups, were proposed. Moreover, the well diffusion method showed that the strain of M503 decreases the antibacterial potency of tetracycline, doxycycline, and chlorotetracycline. These findings proposed a putative mechanism of tetracycline degradation by a fungus strain and contributed to the estimation of the fate of tetracycline in the aquatic environment. Full article
(This article belongs to the Special Issue Biodegradation and Environmental Microbiomes)
Show Figures

Figure 1

Back to TopTop