Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Cordyceps gunnii

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3921 KB  
Article
Alleviating Effects of Ethanol Extract from Acremonium terricola Culture on Patulin Toxicity
by Haiyan Lin, Savindi Kaushalya Edirisinghe, Ijeoma Esther Okolo, Zhen Chen, Juan Sun, Wei Hong and Ruiyu Zhu
Antioxidants 2025, 14(5), 509; https://doi.org/10.3390/antiox14050509 - 24 Apr 2025
Viewed by 898
Abstract
Exposure to patulin (PAT) poses a significant health risk to animals, emphasizing the need for natural, safe substances to mitigate toxicity. Acremonium terricola culture (ATC), a fungal fermentation-derived feed additive, is known for its antioxidant properties, yet its potential to alleviate mycotoxin-induced toxicity [...] Read more.
Exposure to patulin (PAT) poses a significant health risk to animals, emphasizing the need for natural, safe substances to mitigate toxicity. Acremonium terricola culture (ATC), a fungal fermentation-derived feed additive, is known for its antioxidant properties, yet its potential to alleviate mycotoxin-induced toxicity remains largely uninvestigated. In this study, the ethanol extracts from the ATC (EEAT) were prepared with a total phenolic content of 67.9 mg GAE/g and a total flavonoid content of 32.7 mg RE/g. Ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UPLC-ESI-MS/MS) analysis was employed to investigate the bioactive components in EEAT. In PAT-exposed Caenorhabditis elegans models, EEAT treatment significantly enhanced locomotory capacity and elevated antioxidant enzyme activities by 63.1% (SOD) and 90.1% (GSH-ST), respectively. Molecular docking analysis revealed that key active compounds in EEAT, such as coumarin, succinic acid, and trigonelline, exhibited effective binding affinities to potential targets SIR-2.1 and DAF-2. Notably, coumarin and trigonelline were most effective in alleviating PAT toxicity, as evidenced by rescued locomotor rates and oxidative impairment in C. elegans. Our findings not only elucidate the molecular basis of EEAT-mediated PAT mitigation but also establish A. terricola culture as a sustainable antioxidant. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

17 pages, 5829 KB  
Article
Visualized Nucleic Acid Hybridization Lateral Flow Strip Integrating with Microneedle for the Point-of-Care Authentication of Ophiocordyceps sinensis
by Haibin Liu, Xinyue Wang, Hang Tian, Yi Yuan, Jing Wang, Yani Cheng, Linyao Sun, Hongshuo Chen and Xiaoming Song
Int. J. Mol. Sci. 2024, 25(24), 13599; https://doi.org/10.3390/ijms252413599 - 19 Dec 2024
Viewed by 1472
Abstract
Due to the price and demand of Ophiocordyceps sinensis having increased dramatically, adulteration with other fungi is a common problem. Thus, a reliable method of authentic O. sinensis identification is essential. In the present work, a rapid DNA extraction and double-tailed recombinase polymerase [...] Read more.
Due to the price and demand of Ophiocordyceps sinensis having increased dramatically, adulteration with other fungi is a common problem. Thus, a reliable method of authentic O. sinensis identification is essential. In the present work, a rapid DNA extraction and double-tailed recombinase polymerase amplification (RPA) coupled with nucleic acid hybridization lateral flow strip (NAH-LFS) was developed to distinguish authentic O. sinensis ingredients from other fungi substitutes. In the presence of O. sinensis, the RPA amplicons with two ssDNA tails in the opposite ends, which could simultaneously bind with the SH-probes on gold nanoparticles (AuNPs) and capture the probe on the test line, formed visible red bands. RPA combined with NAH-LFS can efficiently detect O. sinensis DNA down to 1.4 ng/μL; meanwhile, the specificity test validated no cross reaction with common adulterants, including Cordyceps gunnii, Cordyceps cicadae, Cordyceps militaris, yungui Cordyceps, and Ophiocordyceps nutans. The whole RPA-NAH-LFS could be completed within 16 min. The RPA-NAH-LFS results in detecting 20 commercial O. sinensis samples are consistent with PCR-AGE and RT-PCR, confirming the feasibility of the RPA-NAH-LFS method. In conclusion, these results are expected to facilitate the application of RPA-NAH-LFS in the authentication detection of O. sinensis materials, providing a convenient and efficient method for O. sinensis quality control. Full article
Show Figures

Figure 1

Back to TopTop