Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Controlled Modulus Columns (CMC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4175 KB  
Article
Formulation of Transfer Curves for Reversal Loadings Based on Soil–Concrete Interface Tests and Flat Dilatometer Soundings
by Kamila Mikina and Jakub Konkol
Materials 2025, 18(16), 3798; https://doi.org/10.3390/ma18163798 - 13 Aug 2025
Viewed by 511
Abstract
This study introduces a novel method for evaluating pile–soil interaction based solely on Dilatometer Test (DMT) results, enhancing and extending the established approach originally developed using Menard Pressuremeter Test (PMT) data. Currently, transfer functions utilizing DMT sounding results are in the early stages [...] Read more.
This study introduces a novel method for evaluating pile–soil interaction based solely on Dilatometer Test (DMT) results, enhancing and extending the established approach originally developed using Menard Pressuremeter Test (PMT) data. Currently, transfer functions utilizing DMT sounding results are in the early stages of development. Presented research fills the gap in DMT-based methods for pile design by introducing transfer functions for reversal loadings to calculate the unit shaft friction of screw displacement piles in Controlled Modulus Columns (CMC) technology. The proposed method utilizes DMT-derived soil parameters, offering a practical and accurate alternative to PMT-based models. Testing research fields were located in the Vistula Marshlands, Northern Poland. Site characterization consisted of piezocone (CPTU) and DMT soundings to characterize the soil profile and estimate soil parameters relevant for pile design. CMCs were installed and statically load tested under various loading schemes. Laboratory direct shear tests on smooth and rough soil-concrete interfaces were performed in both forward and backward directions (reversal loading) to simulate pile loading conditions. Results demonstrate improved adaptability of DMT-based transfer curves to local soil conditions and provide a reliable framework for predicting pile performance in soft soils. Proposed DMT-model returns similar ultimate bearing capacities of the pile to CPT 2012 method for first loading, simultaneously offering better agreement for reversal loading, a situation not accounted for in CPTU 2012 or most other CPT-based methods. Full article
(This article belongs to the Special Issue Advanced Geomaterials and Reinforced Structures (Second Edition))
Show Figures

Figure 1

Back to TopTop