Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = CombiLac®

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3561 KiB  
Article
Comparison of Flow and Compression Properties of Four Lactose-Based Co-Processed Excipients: Cellactose® 80, CombiLac®, MicroceLac® 100, and StarLac®
by Martin Dominik, Barbora Vraníková, Petra Svačinová, Jan Elbl, Sylvie Pavloková, Barbora Blahová Prudilová, Zdeňka Šklubalová and Aleš Franc
Pharmaceutics 2021, 13(9), 1486; https://doi.org/10.3390/pharmaceutics13091486 - 16 Sep 2021
Cited by 13 | Viewed by 6277
Abstract
The utilization of co-processed excipients (CPEs) represents a novel approach to the preparation of orally disintegrating tablets by direct compression. Flow, consolidation, and compression properties of four lactose-based CPEs—Cellactose® 80, CombiLac®, MicroceLac® 100, and StarLac®—were investigated using [...] Read more.
The utilization of co-processed excipients (CPEs) represents a novel approach to the preparation of orally disintegrating tablets by direct compression. Flow, consolidation, and compression properties of four lactose-based CPEs—Cellactose® 80, CombiLac®, MicroceLac® 100, and StarLac®—were investigated using different methods, including granulometry, powder rheometry, and tablet compaction under three pressures. Due to the similar composition and the same preparation technique (spray drying), the properties of CPEs and their compacts were generally comparable. The most pronounced differences were observed in flowability, undissolved fraction after 3 min and 24 h, energy of plastic deformation (E2), ejection force, consolidation behavior, and compact friability. Cellactose® 80 exhibited the most pronounced consolidation behavior, the lowest values of ejection force, and high friability of compacts. CombiLac® showed excellent flow properties but insufficient friability, except for compacts prepared at the highest compression pressure (182 MPa). MicroceLac® 100 displayed the poorest flow properties, lower ejection forces, and the best mechanical resistance of compacts. StarLac® showed excellent flow properties, the lowest amounts of undissolved fraction, the highest ejection force values, and the worst compact mechanical resistance. The obtained results revealed that higher compression pressures need to be used or further excipients have to be added to all tested materials in order to improve the friability and tensile strength of formed tablets, except for MicroceLac® 100. Full article
(This article belongs to the Collection Advanced Pharmaceutical Research in the Czech Republic)
Show Figures

Graphical abstract

17 pages, 1740 KiB  
Article
Investigating In Vitro and Ex Vivo Properties of Artemether/Lumefantrine Double-Fixed Dose Combination Lipid Matrix Tablets Prepared by Hot Fusion
by Christi A. Wilkins, Lissinda H. du Plessis and Joe M. Viljoen
Pharmaceutics 2021, 13(7), 922; https://doi.org/10.3390/pharmaceutics13070922 - 22 Jun 2021
Cited by 7 | Viewed by 2983
Abstract
Highly lipophilic antimalarial drugs, artemether and lumefantrine, whilst an effective fixed-dose combination treatment to lower the malarial disease burden, are therapeutically hindered by low aqueous solubility and varied bioavailability. This work investigates the plausibility of directly compressed lipid matrix tablets, their role as [...] Read more.
Highly lipophilic antimalarial drugs, artemether and lumefantrine, whilst an effective fixed-dose combination treatment to lower the malarial disease burden, are therapeutically hindered by low aqueous solubility and varied bioavailability. This work investigates the plausibility of directly compressed lipid matrix tablets, their role as lipid-based formulations and their future standing as drug delivery systems. Lipid matrix tablets were manufactured from solid lipid dispersions in various lipid:drug ratios employing hot fusion—the melt mixing of highly lipophilic drugs with polymer(s). Sequential biorelevant dissolution media, multiple mathematical models and ex vivo analysis utilizing porcine tissue samples were employed to assess drug release kinetics and more accurately predict in vitro performance. Directly compressed stearic acid tablets in a 0.5:1 lipid:drug ratio were deemed optimal within investigated parameters. Biorelevant media was of immense value for artemether release analysis, with formulation SA0.5C1 (Stearic Acid:double fixed dose in a 0.5:1 ratio (i.e., Stearic acid 70 mg + Lumefantrine 120 mg + Artemether 20 mg); CombiLac® as filler (q.s.); and 1% w/w magnesium stearate) yielding a higher percentage of artemether release (97.21%) than the commercially available product, Coartem® (86.12%). However, dissolution media lacked the specificity to detect lumefantrine. Nonetheless, stearic acid lipid:drug ratios governed drug release mechanisms. This work demonstrates the successful utilization of lipids as pharmaceutical excipients, particularly in the formulation of lipid matrix tablets to augment the dissolution of highly lipophilic drugs, and could thus potentially improve current malarial treatment regimens. Full article
(This article belongs to the Special Issue Solubilization and Controlled Release of Poorly Water-Soluble Drugs)
Show Figures

Figure 1

6 pages, 520 KiB  
Article
A Novel Approach for Nucleic Acid Delivery Into Cancer Cells
by Dace Vainauska, Svetlana Kozireva, Andrejs Karpovs, Maksims Čistjakovs and Mihails Bariševs
Medicina 2012, 48(6), 48; https://doi.org/10.3390/medicina48060048 - 10 Jun 2012
Cited by 18 | Viewed by 1305
Abstract
Background. Liposomal magnetofection is based on the use of superparamagnetic particles and cationic lipids and shows better transfection efficiency than other common nonviral gene delivery methods; however, the distribution of aggregate complexes over the cell surface may be ununiform. The use of [...] Read more.
Background. Liposomal magnetofection is based on the use of superparamagnetic particles and cationic lipids and shows better transfection efficiency than other common nonviral gene delivery methods; however, the distribution of aggregate complexes over the cell surface may be ununiform. The use of a dynamic gradient magnetic field could overcome this limitation. A newly developed device for magnetofection under a dynamic magnetic field was used to compare the transfection efficiency of prostate carcinoma cell line PC3 with that obtained by lipofection and magnetofection.
Material and Methods. Reporter plasmid pcDNA3.1LacZ DNA was used in combination with Lipofectamine2000 reagent and superparamagnetic nanoparticles CombiMag. The effects of incubation time under a dynamic magnetic field and a rotation frequency of magnets on transfection efficiency for PC3 cell line were determined. Alternatively, lipofection and liposomal magnetofection were carried out. Transfection efficiency of delivery methods was estimated by β-galactosidase staining; cell viability, by acridine orange/ethidium bromide staining.
Results
. Liposomal magnetofection under a dynamic gradient magnetic field demonstrated the highest transfection efficiency: it was greater by almost 21% and 42% in comparison with liposomal magnetofection and lipofection, respectively. The optimal incubation time under dynamic magnetic field and the optimal magnet rotation frequency were 5 minutes and 5 rpm, respectively. Liposomal magnetofection under a dynamic gradient magnetic field was less cytotoxic (7%) than that under a permanent magnetic field (17%) and lipofection (11%).
Conclusions. Our new approach, based on the use of a dynamic gradient magnetic field, enhanced the transfection efficiency and had a less cytotoxic effect on prostate cancer cells in comparison with the standard magnetofection and lipofection. Full article
Back to TopTop