Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Ceratitis rosa

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5673 KiB  
Article
Insight on Fruit Fly IPM Technology Uptake and Barriers to Scaling in Africa
by Saliou Niassy, Beatrice Murithii, Evanson R. Omuse, Emily Kimathi, Henri Tonnang, Shepard Ndlela, Samira Mohamed and Sunday Ekesi
Sustainability 2022, 14(5), 2954; https://doi.org/10.3390/su14052954 - 3 Mar 2022
Cited by 23 | Viewed by 5408
Abstract
Tephritid fruit flies are considered one of the world’s most notorious pests of horticultural crops, causing extensive direct and indirect damage. Over the past two decades, a comprehensive, integrated pest management (IPM) package for the management of a plethora of fruit fly pests, [...] Read more.
Tephritid fruit flies are considered one of the world’s most notorious pests of horticultural crops, causing extensive direct and indirect damage. Over the past two decades, a comprehensive, integrated pest management (IPM) package for the management of a plethora of fruit fly pests, including Bactrocera dorsalis, B. latifrons, B. zonata, Ceratitis cosyra, C. rosa, C. fasciventris, C. quilici, C. capitata, Dacus spp. and Zeugodacus cucurbitae, has been developed, disseminated and promoted among horticultural growers in Africa. To estimate the numbers of beneficiaries reached by the fruit fly IPM technology and the barriers to technology uptake, we interviewed 290 experts in 30 African countries covering five regions of the continent, and the responses collected were represented as follows: Southern Africa (39.1%), Eastern Africa (31.6%), Western Africa (18.0%), Central Africa (9.0%) and Northern Africa (2.0%). Our results revealed that the use of fruit fly IPM technologies varied across the regions, with Eastern Africa and Western Africa the leading regions, with the highest IPM technology penetration. Field sanitation remains the most common practice for managing fruit flies, followed by protein bait spray, use of biopesticides, male annihilation technique and parasitoid releases. According to the survey, over 101 million people have benefited from the fruit fly IPM interventions in the countries surveyed representing only 19.1% of the estimated beneficiaries. The region that benefitted the most was Eastern Africa (50.2 million), followed by Central and Western Africa (11.7 to 17.7 million), and Southern and Northern Africa had the fewest beneficiaries (10.4 to 11.0 million). The limitations to the IPM technologies uptake varied among the regions, but the common ones include a lack of awareness of the IPM technologies, a lack of access to the IPM products, insufficient training, a low involvement of private sectors and a lack of policies for the regulation of IPM technologies. Although significant strides have been made in promoting the fruit fly IPM technologies over the past two decades, our study reveals that the demand surpasses the current supply. Our study recommends a comprehensive strategy for the dissemination and promotion of the technologies through a multi-institutional alliance that enhances public and private partnerships, digital platforms and youth engagement to consolidate previous gains at the regional and continental levels. Full article
Show Figures

Figure 1

15 pages, 317 KiB  
Review
Postharvest Disinfestation Treatments for False Codling Moth and Fruit Flies in Citrus from South Africa
by Sean Moore and Aruna Manrakhan
Horticulturae 2022, 8(3), 221; https://doi.org/10.3390/horticulturae8030221 - 3 Mar 2022
Cited by 13 | Viewed by 5082
Abstract
South Africa is the 13th largest producer and second largest exporter of citrus fruit globally. The false codling moth, Thaumatotibia leucotreta, and the fruit flies, Ceratitis capitata, C. rosa and Bactrocera dorsalis, can potentially infest citrus fruit and therefore pose [...] Read more.
South Africa is the 13th largest producer and second largest exporter of citrus fruit globally. The false codling moth, Thaumatotibia leucotreta, and the fruit flies, Ceratitis capitata, C. rosa and Bactrocera dorsalis, can potentially infest citrus fruit and therefore pose a phytosanitary risk for export markets. Consequently, a wide range of postharvest phytosanitary treatments for disinfestation of citrus fruit from these pests have been investigated. These include cold treatments, irradiation, fumigation, heat treatments, and combinations of some of these. Due to the potential phytotoxic effects of all these treatments, the use of a systems approach that depends on two or more independent measures for acceptable phytosanitary risk mitigation is a preferable option. To date, the only postharvest disinfestation treatments used commercially for T. leucotreta and fruit flies for South African citrus, are stand-alone cold treatments and partial cold treatments, as a component in a multi-tiered systems approach. Research on development of novel and improvement of existing postharvest measures continues as a high priority. This includes postharvest detection technologies, in addition to treatment technologies. Full article
(This article belongs to the Special Issue Postharvest Management of Citrus Fruit)
Back to TopTop